/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import linear_algebra.contraction import linear_algebra.finite_dimensional import linear_algebra.dual /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V ⊗ dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable theory section coevaluation open tensor_product finite_dimensional open_locale tensor_product big_operators universes u v variables (K : Type u) [field K] variables (V : Type v) [add_comm_group V] [module K V] [finite_dimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K →ₗ[K] V ⊗[K] (module.dual K V) := let bV := basis.of_vector_space K V in (basis.singleton unit K).constr K $ λ _, ∑ (i : basis.of_vector_space_index K V), bV i ⊗ₜ[K] bV.coord i lemma coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := basis.of_vector_space K V in ∑ (i : basis.of_vector_space_index K V), bV i ⊗ₜ[K] bV.coord i := begin simp only [coevaluation, id], rw [(basis.singleton unit K).constr_apply_fintype K], simp only [fintype.univ_punit, finset.sum_const, one_smul, basis.singleton_repr, basis.equiv_fun_apply,basis.coe_of_vector_space, one_nsmul, finset.card_singleton], end open tensor_product /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `category_theory.monoidal.rigid`. -/ lemma contract_left_assoc_coevaluation : ((contract_left K V).rtensor _) ∘ₗ (tensor_product.assoc K _ _ _).symm.to_linear_map ∘ₗ ((coevaluation K V).ltensor (module.dual K V)) = (tensor_product.lid K _).symm.to_linear_map ∘ₗ (tensor_product.rid K _).to_linear_map := begin letI := classical.dec_eq (basis.of_vector_space_index K V), apply tensor_product.ext, apply (basis.of_vector_space K V).dual_basis.ext, intro j, apply linear_map.ext_ring, rw [linear_map.compr₂_apply, linear_map.compr₂_apply, tensor_product.mk_apply], simp only [linear_map.coe_comp, function.comp_app, linear_equiv.coe_to_linear_map], rw [rid_tmul, one_smul, lid_symm_apply], simp only [linear_equiv.coe_to_linear_map, linear_map.ltensor_tmul, coevaluation_apply_one], rw [tensor_product.tmul_sum, linear_equiv.map_sum], simp only [assoc_symm_tmul], rw [linear_map.map_sum], simp only [linear_map.rtensor_tmul, contract_left_apply], simp only [basis.coe_dual_basis, basis.coord_apply, basis.repr_self_apply, tensor_product.ite_tmul], rw [finset.sum_ite_eq'], simp only [finset.mem_univ, if_true] end /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `category_theory.monoidal.rigid`. -/ lemma contract_left_assoc_coevaluation' : ((contract_left K V).ltensor _) ∘ₗ (tensor_product.assoc K _ _ _).to_linear_map ∘ₗ ((coevaluation K V).rtensor V) = (tensor_product.rid K _).symm.to_linear_map ∘ₗ (tensor_product.lid K _).to_linear_map := begin letI := classical.dec_eq (basis.of_vector_space_index K V), apply tensor_product.ext, apply linear_map.ext_ring, apply (basis.of_vector_space K V).ext, intro j, rw [linear_map.compr₂_apply, linear_map.compr₂_apply, tensor_product.mk_apply], simp only [linear_map.coe_comp, function.comp_app, linear_equiv.coe_to_linear_map], rw [lid_tmul, one_smul, rid_symm_apply], simp only [linear_equiv.coe_to_linear_map, linear_map.rtensor_tmul, coevaluation_apply_one], rw [tensor_product.sum_tmul, linear_equiv.map_sum], simp only [assoc_tmul], rw [linear_map.map_sum], simp only [linear_map.ltensor_tmul, contract_left_apply], simp only [basis.coord_apply, basis.repr_self_apply, tensor_product.tmul_ite], rw [finset.sum_ite_eq], simp only [finset.mem_univ, if_true] end end coevaluation