/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen -/ import linear_algebra.multilinear.basis import linear_algebra.matrix.reindex import ring_theory.algebra_tower import tactic.field_simp import linear_algebra.matrix.nonsingular_inverse import linear_algebra.matrix.basis /-! # Determinant of families of vectors This file defines the determinant of an endomorphism, and of a family of vectors with respect to some basis. For the determinant of a matrix, see the file `linear_algebra.matrix.determinant`. ## Main definitions In the list below, and in all this file, `R` is a commutative ring (semiring is sometimes enough), `M` and its variations are `R`-modules, `ι`, `κ`, `n` and `m` are finite types used for indexing. * `basis.det`: the determinant of a family of vectors with respect to a basis, as a multilinear map * `linear_map.det`: the determinant of an endomorphism `f : End R M` as a multiplicative homomorphism (if `M` does not have a finite `R`-basis, the result is `1` instead) * `linear_equiv.det`: the determinant of an isomorphism `f : M ≃ₗ[R] M` as a multiplicative homomorphism (if `M` does not have a finite `R`-basis, the result is `1` instead) ## Tags basis, det, determinant -/ noncomputable theory open_locale big_operators open_locale matrix open linear_map open submodule universes u v w open linear_map matrix set function variables {R : Type*} [comm_ring R] variables {M : Type*} [add_comm_group M] [module R M] variables {M' : Type*} [add_comm_group M'] [module R M'] variables {ι : Type*} [decidable_eq ι] [fintype ι] variables (e : basis ι R M) section conjugate variables {A : Type*} [comm_ring A] variables {m n : Type*} [fintype m] [fintype n] /-- If `R^m` and `R^n` are linearly equivalent, then `m` and `n` are also equivalent. -/ def equiv_of_pi_lequiv_pi {R : Type*} [comm_ring R] [nontrivial R] (e : (m → R) ≃ₗ[R] (n → R)) : m ≃ n := basis.index_equiv (basis.of_equiv_fun e.symm) (pi.basis_fun _ _) namespace matrix /-- If `M` and `M'` are each other's inverse matrices, they are square matrices up to equivalence of types. -/ def index_equiv_of_inv [nontrivial A] [decidable_eq m] [decidable_eq n] {M : matrix m n A} {M' : matrix n m A} (hMM' : M ⬝ M' = 1) (hM'M : M' ⬝ M = 1) : m ≃ n := equiv_of_pi_lequiv_pi (to_lin'_of_inv hMM' hM'M) lemma det_comm [decidable_eq n] (M N : matrix n n A) : det (M ⬝ N) = det (N ⬝ M) := by rw [det_mul, det_mul, mul_comm] /-- If there exists a two-sided inverse `M'` for `M` (indexed differently), then `det (N ⬝ M) = det (M ⬝ N)`. -/ lemma det_comm' [decidable_eq m] [decidable_eq n] {M : matrix n m A} {N : matrix m n A} {M' : matrix m n A} (hMM' : M ⬝ M' = 1) (hM'M : M' ⬝ M = 1) : det (M ⬝ N) = det (N ⬝ M) := begin nontriviality A, -- Although `m` and `n` are different a priori, we will show they have the same cardinality. -- This turns the problem into one for square matrices, which is easy. let e := index_equiv_of_inv hMM' hM'M, rw [← det_minor_equiv_self e, ← minor_mul_equiv _ _ _ (equiv.refl n) _, det_comm, minor_mul_equiv, equiv.coe_refl, minor_id_id] end /-- If `M'` is a two-sided inverse for `M` (indexed differently), `det (M ⬝ N ⬝ M') = det N`. See `matrix.det_conj` and `matrix.det_conj'` for the case when `M' = M⁻¹` or vice versa. -/ lemma det_conj_of_mul_eq_one [decidable_eq m] [decidable_eq n] {M : matrix m n A} {M' : matrix n m A} {N : matrix n n A} (hMM' : M ⬝ M' = 1) (hM'M : M' ⬝ M = 1) : det (M ⬝ N ⬝ M') = det N := by rw [← det_comm' hM'M hMM', ← matrix.mul_assoc, hM'M, matrix.one_mul] end matrix end conjugate namespace linear_map /-! ### Determinant of a linear map -/ variables {A : Type*} [comm_ring A] [module A M] variables {κ : Type*} [fintype κ] /-- The determinant of `linear_map.to_matrix` does not depend on the choice of basis. -/ lemma det_to_matrix_eq_det_to_matrix [decidable_eq κ] (b : basis ι A M) (c : basis κ A M) (f : M →ₗ[A] M) : det (linear_map.to_matrix b b f) = det (linear_map.to_matrix c c f) := by rw [← linear_map_to_matrix_mul_basis_to_matrix c b c, ← basis_to_matrix_mul_linear_map_to_matrix b c b, matrix.det_conj_of_mul_eq_one]; rw [basis.to_matrix_mul_to_matrix, basis.to_matrix_self] /-- The determinant of an endomorphism given a basis. See `linear_map.det` for a version that populates the basis non-computably. Although the `trunc (basis ι A M)` parameter makes it slightly more convenient to switch bases, there is no good way to generalize over universe parameters, so we can't fully state in `det_aux`'s type that it does not depend on the choice of basis. Instead you can use the `det_aux_def'` lemma, or avoid mentioning a basis at all using `linear_map.det`. -/ def det_aux : trunc (basis ι A M) → (M →ₗ[A] M) →* A := trunc.lift (λ b : basis ι A M, (det_monoid_hom).comp (to_matrix_alg_equiv b : (M →ₗ[A] M) →* matrix ι ι A)) (λ b c, monoid_hom.ext $ det_to_matrix_eq_det_to_matrix b c) /-- Unfold lemma for `det_aux`. See also `det_aux_def'` which allows you to vary the basis. -/ lemma det_aux_def (b : basis ι A M) (f : M →ₗ[A] M) : linear_map.det_aux (trunc.mk b) f = matrix.det (linear_map.to_matrix b b f) := rfl -- Discourage the elaborator from unfolding `det_aux` and producing a huge term. attribute [irreducible] linear_map.det_aux lemma det_aux_def' {ι' : Type*} [fintype ι'] [decidable_eq ι'] (tb : trunc $ basis ι A M) (b' : basis ι' A M) (f : M →ₗ[A] M) : linear_map.det_aux tb f = matrix.det (linear_map.to_matrix b' b' f) := by { apply trunc.induction_on tb, intro b, rw [det_aux_def, det_to_matrix_eq_det_to_matrix b b'] } @[simp] lemma det_aux_id (b : trunc $ basis ι A M) : linear_map.det_aux b (linear_map.id) = 1 := (linear_map.det_aux b).map_one @[simp] lemma det_aux_comp (b : trunc $ basis ι A M) (f g : M →ₗ[A] M) : linear_map.det_aux b (f.comp g) = linear_map.det_aux b f * linear_map.det_aux b g := (linear_map.det_aux b).map_mul f g section open_locale classical -- Discourage the elaborator from unfolding `det` and producing a huge term by marking it -- as irreducible. /-- The determinant of an endomorphism independent of basis. If there is no finite basis on `M`, the result is `1` instead. -/ @[irreducible] protected def det : (M →ₗ[A] M) →* A := if H : ∃ (s : finset M), nonempty (basis s A M) then linear_map.det_aux (trunc.mk H.some_spec.some) else 1 lemma coe_det [decidable_eq M] : ⇑(linear_map.det : (M →ₗ[A] M) →* A) = if H : ∃ (s : finset M), nonempty (basis s A M) then linear_map.det_aux (trunc.mk H.some_spec.some) else 1 := by { ext, unfold linear_map.det, split_ifs, { congr }, -- use the correct `decidable_eq` instance refl } end -- Auxiliary lemma, the `simp` normal form goes in the other direction -- (using `linear_map.det_to_matrix`) lemma det_eq_det_to_matrix_of_finset [decidable_eq M] {s : finset M} (b : basis s A M) (f : M →ₗ[A] M) : f.det = matrix.det (linear_map.to_matrix b b f) := have ∃ (s : finset M), nonempty (basis s A M), from ⟨s, ⟨b⟩⟩, by rw [linear_map.coe_det, dif_pos, det_aux_def' _ b]; assumption @[simp] lemma det_to_matrix (b : basis ι A M) (f : M →ₗ[A] M) : matrix.det (to_matrix b b f) = f.det := by { haveI := classical.dec_eq M, rw [det_eq_det_to_matrix_of_finset b.reindex_finset_range, det_to_matrix_eq_det_to_matrix b] } @[simp] lemma det_to_matrix' {ι : Type*} [fintype ι] [decidable_eq ι] (f : (ι → A) →ₗ[A] (ι → A)) : det f.to_matrix' = f.det := by simp [← to_matrix_eq_to_matrix'] @[simp] lemma det_to_lin (b : basis ι R M) (f : matrix ι ι R) : linear_map.det (matrix.to_lin b b f) = f.det := by rw [← linear_map.det_to_matrix b, linear_map.to_matrix_to_lin] /-- To show `P f.det` it suffices to consider `P (to_matrix _ _ f).det` and `P 1`. -/ @[elab_as_eliminator] lemma det_cases [decidable_eq M] {P : A → Prop} (f : M →ₗ[A] M) (hb : ∀ (s : finset M) (b : basis s A M), P (to_matrix b b f).det) (h1 : P 1) : P f.det := begin unfold linear_map.det, split_ifs with h, { convert hb _ h.some_spec.some, apply det_aux_def' }, { exact h1 } end @[simp] lemma det_comp (f g : M →ₗ[A] M) : (f.comp g).det = f.det * g.det := linear_map.det.map_mul f g @[simp] lemma det_id : (linear_map.id : M →ₗ[A] M).det = 1 := linear_map.det.map_one /-- Multiplying a map by a scalar `c` multiplies its determinant by `c ^ dim M`. -/ @[simp] lemma det_smul {𝕜 : Type*} [field 𝕜] {M : Type*} [add_comm_group M] [module 𝕜 M] (c : 𝕜) (f : M →ₗ[𝕜] M) : linear_map.det (c • f) = c ^ (finite_dimensional.finrank 𝕜 M) * linear_map.det f := begin by_cases H : ∃ (s : finset M), nonempty (basis s 𝕜 M), { haveI : finite_dimensional 𝕜 M, { rcases H with ⟨s, ⟨hs⟩⟩, exact finite_dimensional.of_finset_basis hs }, simp only [← det_to_matrix (finite_dimensional.fin_basis 𝕜 M), linear_equiv.map_smul, fintype.card_fin, det_smul] }, { classical, have : finite_dimensional.finrank 𝕜 M = 0 := finrank_eq_zero_of_not_exists_basis H, simp [coe_det, H, this] } end lemma det_zero' {ι : Type*} [fintype ι] [nonempty ι] (b : basis ι A M) : linear_map.det (0 : M →ₗ[A] M) = 0 := by { haveI := classical.dec_eq ι, rw [← det_to_matrix b, linear_equiv.map_zero, det_zero], assumption } /-- In a finite-dimensional vector space, the zero map has determinant `1` in dimension `0`, and `0` otherwise. We give a formula that also works in infinite dimension, where we define the determinant to be `1`. -/ @[simp] lemma det_zero {𝕜 : Type*} [field 𝕜] {M : Type*} [add_comm_group M] [module 𝕜 M] : linear_map.det (0 : M →ₗ[𝕜] M) = (0 : 𝕜) ^ (finite_dimensional.finrank 𝕜 M) := by simp only [← zero_smul 𝕜 (1 : M →ₗ[𝕜] M), det_smul, mul_one, monoid_hom.map_one] /-- Conjugating a linear map by a linear equiv does not change its determinant. -/ @[simp] lemma det_conj {N : Type*} [add_comm_group N] [module A N] (f : M →ₗ[A] M) (e : M ≃ₗ[A] N) : linear_map.det ((e : M →ₗ[A] N) ∘ₗ (f ∘ₗ (e.symm : N →ₗ[A] M))) = linear_map.det f := begin classical, by_cases H : ∃ (s : finset M), nonempty (basis s A M), { rcases H with ⟨s, ⟨b⟩⟩, rw [← det_to_matrix b f, ← det_to_matrix (b.map e), to_matrix_comp (b.map e) b (b.map e), to_matrix_comp (b.map e) b b, ← matrix.mul_assoc, matrix.det_conj_of_mul_eq_one], { rw [← to_matrix_comp, linear_equiv.comp_coe, e.symm_trans_self, linear_equiv.refl_to_linear_map, to_matrix_id] }, { rw [← to_matrix_comp, linear_equiv.comp_coe, e.self_trans_symm, linear_equiv.refl_to_linear_map, to_matrix_id] } }, { have H' : ¬ (∃ (t : finset N), nonempty (basis t A N)), { contrapose! H, rcases H with ⟨s, ⟨b⟩⟩, exact ⟨_, ⟨(b.map e.symm).reindex_finset_range⟩⟩ }, simp only [coe_det, H, H', pi.one_apply, dif_neg, not_false_iff] } end /-- If a linear map is invertible, so is its determinant. -/ lemma is_unit_det {A : Type*} [comm_ring A] [module A M] (f : M →ₗ[A] M) (hf : is_unit f) : is_unit f.det := begin obtain ⟨g, hg⟩ : ∃ g, f.comp g = 1 := hf.exists_right_inv, have : linear_map.det f * linear_map.det g = 1, by simp only [← linear_map.det_comp, hg, monoid_hom.map_one], exact is_unit_of_mul_eq_one _ _ this, end /-- If a linear map has determinant different from `1`, then the space is finite-dimensional. -/ lemma finite_dimensional_of_det_ne_one {𝕜 : Type*} [field 𝕜] [module 𝕜 M] (f : M →ₗ[𝕜] M) (hf : f.det ≠ 1) : finite_dimensional 𝕜 M := begin by_cases H : ∃ (s : finset M), nonempty (basis s 𝕜 M), { rcases H with ⟨s, ⟨hs⟩⟩, exact finite_dimensional.of_finset_basis hs }, { classical, simp [linear_map.coe_det, H] at hf, exact hf.elim } end /-- If the determinant of a map vanishes, then the map is not onto. -/ lemma range_lt_top_of_det_eq_zero {𝕜 : Type*} [field 𝕜] [module 𝕜 M] {f : M →ₗ[𝕜] M} (hf : f.det = 0) : f.range < ⊤ := begin haveI : finite_dimensional 𝕜 M, by simp [f.finite_dimensional_of_det_ne_one, hf], contrapose hf, simp only [lt_top_iff_ne_top, not_not, ← is_unit_iff_range_eq_top] at hf, exact is_unit_iff_ne_zero.1 (f.is_unit_det hf) end /-- If the determinant of a map vanishes, then the map is not injective. -/ lemma bot_lt_ker_of_det_eq_zero {𝕜 : Type*} [field 𝕜] [module 𝕜 M] {f : M →ₗ[𝕜] M} (hf : f.det = 0) : ⊥ < f.ker := begin haveI : finite_dimensional 𝕜 M, by simp [f.finite_dimensional_of_det_ne_one, hf], contrapose hf, simp only [bot_lt_iff_ne_bot, not_not, ← is_unit_iff_ker_eq_bot] at hf, exact is_unit_iff_ne_zero.1 (f.is_unit_det hf) end end linear_map namespace linear_equiv /-- On a `linear_equiv`, the domain of `linear_map.det` can be promoted to `Rˣ`. -/ protected def det : (M ≃ₗ[R] M) →* Rˣ := (units.map (linear_map.det : (M →ₗ[R] M) →* R)).comp (linear_map.general_linear_group.general_linear_equiv R M).symm.to_monoid_hom @[simp] lemma coe_det (f : M ≃ₗ[R] M) : ↑f.det = linear_map.det (f : M →ₗ[R] M) := rfl @[simp] lemma coe_inv_det (f : M ≃ₗ[R] M) : ↑(f.det⁻¹) = linear_map.det (f.symm : M →ₗ[R] M) := rfl @[simp] lemma det_refl : (linear_equiv.refl R M).det = 1 := units.ext $ linear_map.det_id @[simp] lemma det_trans (f g : M ≃ₗ[R] M) : (f.trans g).det = g.det * f.det := map_mul _ g f @[simp] lemma det_symm (f : M ≃ₗ[R] M) : f.symm.det = f.det⁻¹ := map_inv _ f /-- Conjugating a linear equiv by a linear equiv does not change its determinant. -/ @[simp] lemma det_conj (f : M ≃ₗ[R] M) (e : M ≃ₗ[R] M') : ((e.symm.trans f).trans e).det = f.det := by rw [←units.eq_iff, coe_det, coe_det, ←comp_coe, ←comp_coe, linear_map.det_conj] end linear_equiv /-- The determinants of a `linear_equiv` and its inverse multiply to 1. -/ @[simp] lemma linear_equiv.det_mul_det_symm {A : Type*} [comm_ring A] [module A M] (f : M ≃ₗ[A] M) : (f : M →ₗ[A] M).det * (f.symm : M →ₗ[A] M).det = 1 := by simp [←linear_map.det_comp] /-- The determinants of a `linear_equiv` and its inverse multiply to 1. -/ @[simp] lemma linear_equiv.det_symm_mul_det {A : Type*} [comm_ring A] [module A M] (f : M ≃ₗ[A] M) : (f.symm : M →ₗ[A] M).det * (f : M →ₗ[A] M).det = 1 := by simp [←linear_map.det_comp] -- Cannot be stated using `linear_map.det` because `f` is not an endomorphism. lemma linear_equiv.is_unit_det (f : M ≃ₗ[R] M') (v : basis ι R M) (v' : basis ι R M') : is_unit (linear_map.to_matrix v v' f).det := begin apply is_unit_det_of_left_inverse, simpa using (linear_map.to_matrix_comp v v' v f.symm f).symm end /-- Specialization of `linear_equiv.is_unit_det` -/ lemma linear_equiv.is_unit_det' {A : Type*} [comm_ring A] [module A M] (f : M ≃ₗ[A] M) : is_unit (linear_map.det (f : M →ₗ[A] M)) := is_unit_of_mul_eq_one _ _ f.det_mul_det_symm /-- The determinant of `f.symm` is the inverse of that of `f` when `f` is a linear equiv. -/ lemma linear_equiv.det_coe_symm {𝕜 : Type*} [field 𝕜] [module 𝕜 M] (f : M ≃ₗ[𝕜] M) : (f.symm : M →ₗ[𝕜] M).det = (f : M →ₗ[𝕜] M).det ⁻¹ := by field_simp [is_unit.ne_zero f.is_unit_det'] /-- Builds a linear equivalence from a linear map whose determinant in some bases is a unit. -/ @[simps] def linear_equiv.of_is_unit_det {f : M →ₗ[R] M'} {v : basis ι R M} {v' : basis ι R M'} (h : is_unit (linear_map.to_matrix v v' f).det) : M ≃ₗ[R] M' := { to_fun := f, map_add' := f.map_add, map_smul' := f.map_smul, inv_fun := to_lin v' v (to_matrix v v' f)⁻¹, left_inv := λ x, calc to_lin v' v (to_matrix v v' f)⁻¹ (f x) = to_lin v v ((to_matrix v v' f)⁻¹ ⬝ to_matrix v v' f) x : by { rw [to_lin_mul v v' v, to_lin_to_matrix, linear_map.comp_apply] } ... = x : by simp [h], right_inv := λ x, calc f (to_lin v' v (to_matrix v v' f)⁻¹ x) = to_lin v' v' (to_matrix v v' f ⬝ (to_matrix v v' f)⁻¹) x : by { rw [to_lin_mul v' v v', linear_map.comp_apply, to_lin_to_matrix v v'] } ... = x : by simp [h] } @[simp] lemma linear_equiv.coe_of_is_unit_det {f : M →ₗ[R] M'} {v : basis ι R M} {v' : basis ι R M'} (h : is_unit (linear_map.to_matrix v v' f).det) : (linear_equiv.of_is_unit_det h : M →ₗ[R] M') = f := by { ext x, refl } /-- Builds a linear equivalence from a linear map on a finite-dimensional vector space whose determinant is nonzero. -/ @[reducible] def linear_map.equiv_of_det_ne_zero {𝕜 : Type*} [field 𝕜] {M : Type*} [add_comm_group M] [module 𝕜 M] [finite_dimensional 𝕜 M] (f : M →ₗ[𝕜] M) (hf : linear_map.det f ≠ 0) : M ≃ₗ[𝕜] M := have is_unit (linear_map.to_matrix (finite_dimensional.fin_basis 𝕜 M) (finite_dimensional.fin_basis 𝕜 M) f).det := by simp only [linear_map.det_to_matrix, is_unit_iff_ne_zero.2 hf], linear_equiv.of_is_unit_det this lemma linear_map.associated_det_of_eq_comp (e : M ≃ₗ[R] M) (f f' : M →ₗ[R] M) (h : ∀ x, f x = f' (e x)) : associated f.det f'.det := begin suffices : associated (f' ∘ₗ ↑e).det f'.det, { convert this using 2, ext x, exact h x }, rw [← mul_one f'.det, linear_map.det_comp], exact associated.mul_left _ (associated_one_iff_is_unit.mpr e.is_unit_det') end lemma linear_map.associated_det_comp_equiv {N : Type*} [add_comm_group N] [module R N] (f : N →ₗ[R] M) (e e' : M ≃ₗ[R] N) : associated (f ∘ₗ ↑e).det (f ∘ₗ ↑e').det := begin refine linear_map.associated_det_of_eq_comp (e.trans e'.symm) _ _ _, intro x, simp only [linear_map.comp_apply, linear_equiv.coe_coe, linear_equiv.trans_apply, linear_equiv.apply_symm_apply], end /-- The determinant of a family of vectors with respect to some basis, as an alternating multilinear map. -/ def basis.det : alternating_map R M R ι := { to_fun := λ v, det (e.to_matrix v), map_add' := begin intros v i x y, simp only [e.to_matrix_update, linear_equiv.map_add], apply det_update_column_add end, map_smul' := begin intros u i c x, simp only [e.to_matrix_update, algebra.id.smul_eq_mul, linear_equiv.map_smul], apply det_update_column_smul end, map_eq_zero_of_eq' := begin intros v i j h hij, rw [←function.update_eq_self i v, h, ←det_transpose, e.to_matrix_update, ←update_row_transpose, ←e.to_matrix_transpose_apply], apply det_zero_of_row_eq hij, rw [update_row_ne hij.symm, update_row_self], end } lemma basis.det_apply (v : ι → M) : e.det v = det (e.to_matrix v) := rfl lemma basis.det_self : e.det e = 1 := by simp [e.det_apply] /-- `basis.det` is not the zero map. -/ lemma basis.det_ne_zero [nontrivial R] : e.det ≠ 0 := λ h, by simpa [h] using e.det_self lemma is_basis_iff_det {v : ι → M} : linear_independent R v ∧ span R (set.range v) = ⊤ ↔ is_unit (e.det v) := begin split, { rintro ⟨hli, hspan⟩, set v' := basis.mk hli hspan.ge with v'_eq, rw e.det_apply, convert linear_equiv.is_unit_det (linear_equiv.refl _ _) v' e using 2, ext i j, simp }, { intro h, rw [basis.det_apply, basis.to_matrix_eq_to_matrix_constr] at h, set v' := basis.map e (linear_equiv.of_is_unit_det h) with v'_def, have : ⇑ v' = v, { ext i, rw [v'_def, basis.map_apply, linear_equiv.of_is_unit_det_apply, e.constr_basis] }, rw ← this, exact ⟨v'.linear_independent, v'.span_eq⟩ }, end lemma basis.is_unit_det (e' : basis ι R M) : is_unit (e.det e') := (is_basis_iff_det e).mp ⟨e'.linear_independent, e'.span_eq⟩ /-- Any alternating map to `R` where `ι` has the cardinality of a basis equals the determinant map with respect to that basis, multiplied by the value of that alternating map on that basis. -/ lemma alternating_map.eq_smul_basis_det (f : alternating_map R M R ι) : f = f e • e.det := begin refine basis.ext_alternating e (λ i h, _), let σ : equiv.perm ι := equiv.of_bijective i (fintype.injective_iff_bijective.1 h), change f (e ∘ σ) = (f e • e.det) (e ∘ σ), simp [alternating_map.map_perm, basis.det_self] end @[simp] lemma alternating_map.map_basis_eq_zero_iff (f : alternating_map R M R ι) : f e = 0 ↔ f = 0 := ⟨λ h, by simpa [h] using f.eq_smul_basis_det e, λ h, h.symm ▸ alternating_map.zero_apply _⟩ lemma alternating_map.map_basis_ne_zero_iff (f : alternating_map R M R ι) : f e ≠ 0 ↔ f ≠ 0 := not_congr $ f.map_basis_eq_zero_iff e variables {A : Type*} [comm_ring A] [module A M] @[simp] lemma basis.det_comp (e : basis ι A M) (f : M →ₗ[A] M) (v : ι → M) : e.det (f ∘ v) = f.det * e.det v := by { rw [basis.det_apply, basis.det_apply, ← f.det_to_matrix e, ← matrix.det_mul, e.to_matrix_eq_to_matrix_constr (f ∘ v), e.to_matrix_eq_to_matrix_constr v, ← to_matrix_comp, e.constr_comp] } lemma basis.det_reindex {ι' : Type*} [fintype ι'] [decidable_eq ι'] (b : basis ι R M) (v : ι' → M) (e : ι ≃ ι') : (b.reindex e).det v = b.det (v ∘ e) := by rw [basis.det_apply, basis.to_matrix_reindex', det_reindex_alg_equiv, basis.det_apply] lemma basis.det_reindex_symm {ι' : Type*} [fintype ι'] [decidable_eq ι'] (b : basis ι R M) (v : ι → M) (e : ι' ≃ ι) : (b.reindex e.symm).det (v ∘ e) = b.det v := by rw [basis.det_reindex, function.comp.assoc, e.self_comp_symm, function.comp.right_id] @[simp] lemma basis.det_map (b : basis ι R M) (f : M ≃ₗ[R] M') (v : ι → M') : (b.map f).det v = b.det (f.symm ∘ v) := by { rw [basis.det_apply, basis.to_matrix_map, basis.det_apply] } lemma basis.det_map' (b : basis ι R M) (f : M ≃ₗ[R] M') : (b.map f).det = b.det.comp_linear_map f.symm := alternating_map.ext $ b.det_map f @[simp] lemma pi.basis_fun_det : (pi.basis_fun R ι).det = matrix.det_row_alternating := begin ext M, rw [basis.det_apply, basis.coe_pi_basis_fun.to_matrix_eq_transpose, det_transpose], end /-- If we fix a background basis `e`, then for any other basis `v`, we can characterise the coordinates provided by `v` in terms of determinants relative to `e`. -/ lemma basis.det_smul_mk_coord_eq_det_update {v : ι → M} (hli : linear_independent R v) (hsp : ⊤ ≤ span R (range v)) (i : ι) : (e.det v) • (basis.mk hli hsp).coord i = e.det.to_multilinear_map.to_linear_map v i := begin apply (basis.mk hli hsp).ext, intros k, rcases eq_or_ne k i with rfl | hik; simp only [algebra.id.smul_eq_mul, basis.coe_mk, linear_map.smul_apply, linear_map.coe_mk, multilinear_map.to_linear_map_apply], { rw [basis.mk_coord_apply_eq, mul_one, update_eq_self], congr, }, { rw [basis.mk_coord_apply_ne hik, mul_zero, eq_comm], exact e.det.map_eq_zero_of_eq _ (by simp [hik, function.update_apply]) hik, }, end /-- The determinant of a basis constructed by `units_smul` is the product of the given units. -/ @[simp] lemma basis.det_units_smul (w : ι → Rˣ) : e.det (e.units_smul w) = ∏ i, w i := by simp [basis.det_apply] /-- The determinant of a basis constructed by `is_unit_smul` is the product of the given units. -/ @[simp] lemma basis.det_is_unit_smul {w : ι → R} (hw : ∀ i, is_unit (w i)) : e.det (e.is_unit_smul hw) = ∏ i, w i := e.det_units_smul _