/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Fabian Glöckle -/ import linear_algebra.finite_dimensional import linear_algebra.projection import linear_algebra.sesquilinear_form import ring_theory.finiteness import linear_algebra.free_module.finite.rank /-! # Dual vector spaces The dual space of an R-module M is the R-module of linear maps `M → R`. ## Main definitions * `dual R M` defines the dual space of M over R. * Given a basis for an `R`-module `M`, `basis.to_dual` produces a map from `M` to `dual R M`. * Given families of vectors `e` and `ε`, `dual_pair e ε` states that these families have the characteristic properties of a basis and a dual. * `dual_annihilator W` is the submodule of `dual R M` where every element annihilates `W`. ## Main results * `to_dual_equiv` : the linear equivalence between the dual module and primal module, given a finite basis. * `dual_pair.basis` and `dual_pair.eq_dual`: if `e` and `ε` form a dual pair, `e` is a basis and `ε` is its dual basis. * `quot_equiv_annihilator`: the quotient by a subspace is isomorphic to its dual annihilator. ## Notation We sometimes use `V'` as local notation for `dual K V`. ## TODO Erdös-Kaplansky theorem about the dimension of a dual vector space in case of infinite dimension. -/ noncomputable theory namespace module variables (R : Type*) (M : Type*) variables [comm_semiring R] [add_comm_monoid M] [module R M] /-- The dual space of an R-module M is the R-module of linear maps `M → R`. -/ @[derive [add_comm_monoid, module R]] def dual := M →ₗ[R] R instance {S : Type*} [comm_ring S] {N : Type*} [add_comm_group N] [module S N] : add_comm_group (dual S N) := linear_map.add_comm_group instance : linear_map_class (dual R M) R M R := linear_map.semilinear_map_class /-- The canonical pairing of a vector space and its algebraic dual. -/ def dual_pairing (R M) [comm_semiring R] [add_comm_monoid M] [module R M] : module.dual R M →ₗ[R] M →ₗ[R] R := linear_map.id @[simp] lemma dual_pairing_apply (v x) : dual_pairing R M v x = v x := rfl namespace dual instance : inhabited (dual R M) := linear_map.inhabited instance : has_coe_to_fun (dual R M) (λ _, M → R) := ⟨linear_map.to_fun⟩ /-- Maps a module M to the dual of the dual of M. See `module.erange_coe` and `module.eval_equiv`. -/ def eval : M →ₗ[R] (dual R (dual R M)) := linear_map.flip linear_map.id @[simp] lemma eval_apply (v : M) (a : dual R M) : eval R M v a = a v := begin dunfold eval, rw [linear_map.flip_apply, linear_map.id_apply] end variables {R M} {M' : Type*} [add_comm_monoid M'] [module R M'] /-- The transposition of linear maps, as a linear map from `M →ₗ[R] M'` to `dual R M' →ₗ[R] dual R M`. -/ def transpose : (M →ₗ[R] M') →ₗ[R] (dual R M' →ₗ[R] dual R M) := (linear_map.llcomp R M M' R).flip lemma transpose_apply (u : M →ₗ[R] M') (l : dual R M') : transpose u l = l.comp u := rfl variables {M'' : Type*} [add_comm_monoid M''] [module R M''] lemma transpose_comp (u : M' →ₗ[R] M'') (v : M →ₗ[R] M') : transpose (u.comp v) = (transpose v).comp (transpose u) := rfl end dual end module namespace basis universes u v w open module module.dual submodule linear_map cardinal function open_locale big_operators variables {R M K V ι : Type*} section comm_semiring variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι] variables (b : basis ι R M) /-- The linear map from a vector space equipped with basis to its dual vector space, taking basis elements to corresponding dual basis elements. -/ def to_dual : M →ₗ[R] module.dual R M := b.constr ℕ $ λ v, b.constr ℕ $ λ w, if w = v then (1 : R) else 0 lemma to_dual_apply (i j : ι) : b.to_dual (b i) (b j) = if i = j then 1 else 0 := by { erw [constr_basis b, constr_basis b], ac_refl } @[simp] lemma to_dual_total_left (f : ι →₀ R) (i : ι) : b.to_dual (finsupp.total ι M R b f) (b i) = f i := begin rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum, linear_map.sum_apply], simp_rw [linear_map.map_smul, linear_map.smul_apply, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq'], split_ifs with h, { refl }, { rw finsupp.not_mem_support_iff.mp h } end @[simp] lemma to_dual_total_right (f : ι →₀ R) (i : ι) : b.to_dual (b i) (finsupp.total ι M R b f) = f i := begin rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum], simp_rw [linear_map.map_smul, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq], split_ifs with h, { refl }, { rw finsupp.not_mem_support_iff.mp h } end lemma to_dual_apply_left (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i := by rw [← b.to_dual_total_left, b.total_repr] lemma to_dual_apply_right (i : ι) (m : M) : b.to_dual (b i) m = b.repr m i := by rw [← b.to_dual_total_right, b.total_repr] lemma coe_to_dual_self (i : ι) : b.to_dual (b i) = b.coord i := by { ext, apply to_dual_apply_right } /-- `h.to_dual_flip v` is the linear map sending `w` to `h.to_dual w v`. -/ def to_dual_flip (m : M) : (M →ₗ[R] R) := b.to_dual.flip m lemma to_dual_flip_apply (m₁ m₂ : M) : b.to_dual_flip m₁ m₂ = b.to_dual m₂ m₁ := rfl lemma to_dual_eq_repr (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i := b.to_dual_apply_left m i lemma to_dual_eq_equiv_fun [fintype ι] (m : M) (i : ι) : b.to_dual m (b i) = b.equiv_fun m i := by rw [b.equiv_fun_apply, to_dual_eq_repr] lemma to_dual_inj (m : M) (a : b.to_dual m = 0) : m = 0 := begin rw [← mem_bot R, ← b.repr.ker, mem_ker, linear_equiv.coe_coe], apply finsupp.ext, intro b, rw [← to_dual_eq_repr, a], refl end theorem to_dual_ker : b.to_dual.ker = ⊥ := ker_eq_bot'.mpr b.to_dual_inj theorem to_dual_range [fin : fintype ι] : b.to_dual.range = ⊤ := begin rw eq_top_iff', intro f, rw linear_map.mem_range, let lin_comb : ι →₀ R := finsupp.on_finset fin.elems (λ i, f.to_fun (b i)) _, { use finsupp.total ι M R b lin_comb, apply b.ext, { intros i, rw [b.to_dual_eq_repr _ i, repr_total b], { refl } } }, { intros a _, apply fin.complete } end end comm_semiring section variables [comm_semiring R] [add_comm_monoid M] [module R M] [fintype ι] variables (b : basis ι R M) @[simp] lemma sum_dual_apply_smul_coord (f : module.dual R M) : ∑ x, f (b x) • b.coord x = f := begin ext m, simp_rw [linear_map.sum_apply, linear_map.smul_apply, smul_eq_mul, mul_comm (f _), ←smul_eq_mul, ←f.map_smul, ←f.map_sum, basis.coord_apply, basis.sum_repr], end end section comm_ring variables [comm_ring R] [add_comm_group M] [module R M] [decidable_eq ι] variables (b : basis ι R M) /-- A vector space is linearly equivalent to its dual space. -/ @[simps] def to_dual_equiv [fintype ι] : M ≃ₗ[R] (dual R M) := linear_equiv.of_bijective b.to_dual (ker_eq_bot.mp b.to_dual_ker) (range_eq_top.mp b.to_dual_range) /-- Maps a basis for `V` to a basis for the dual space. -/ def dual_basis [fintype ι] : basis ι R (dual R M) := b.map b.to_dual_equiv -- We use `j = i` to match `basis.repr_self` lemma dual_basis_apply_self [fintype ι] (i j : ι) : b.dual_basis i (b j) = if j = i then 1 else 0 := by { convert b.to_dual_apply i j using 2, rw @eq_comm _ j i } lemma total_dual_basis [fintype ι] (f : ι →₀ R) (i : ι) : finsupp.total ι (dual R M) R b.dual_basis f (b i) = f i := begin rw [finsupp.total_apply, finsupp.sum_fintype, linear_map.sum_apply], { simp_rw [linear_map.smul_apply, smul_eq_mul, dual_basis_apply_self, mul_boole, finset.sum_ite_eq, if_pos (finset.mem_univ i)] }, { intro, rw zero_smul }, end lemma dual_basis_repr [fintype ι] (l : dual R M) (i : ι) : b.dual_basis.repr l i = l (b i) := by rw [← total_dual_basis b, basis.total_repr b.dual_basis l] lemma dual_basis_equiv_fun [fintype ι] (l : dual R M) (i : ι) : b.dual_basis.equiv_fun l i = l (b i) := by rw [basis.equiv_fun_apply, dual_basis_repr] lemma dual_basis_apply [fintype ι] (i : ι) (m : M) : b.dual_basis i m = b.repr m i := b.to_dual_apply_right i m @[simp] lemma coe_dual_basis [fintype ι] : ⇑b.dual_basis = b.coord := by { ext i x, apply dual_basis_apply } @[simp] lemma to_dual_to_dual [fintype ι] : b.dual_basis.to_dual.comp b.to_dual = dual.eval R M := begin refine b.ext (λ i, b.dual_basis.ext (λ j, _)), rw [linear_map.comp_apply, to_dual_apply_left, coe_to_dual_self, ← coe_dual_basis, dual.eval_apply, basis.repr_self, finsupp.single_apply, dual_basis_apply_self] end theorem eval_ker {ι : Type*} (b : basis ι R M) : (dual.eval R M).ker = ⊥ := begin rw ker_eq_bot', intros m hm, simp_rw [linear_map.ext_iff, dual.eval_apply, zero_apply] at hm, exact (basis.forall_coord_eq_zero_iff _).mp (λ i, hm (b.coord i)) end lemma eval_range {ι : Type*} [fintype ι] (b : basis ι R M) : (eval R M).range = ⊤ := begin classical, rw [← b.to_dual_to_dual, range_comp, b.to_dual_range, map_top, to_dual_range _], apply_instance end /-- A module with a basis is linearly equivalent to the dual of its dual space. -/ def eval_equiv {ι : Type*} [fintype ι] (b : basis ι R M) : M ≃ₗ[R] dual R (dual R M) := linear_equiv.of_bijective (eval R M) (ker_eq_bot.mp b.eval_ker) (range_eq_top.mp b.eval_range) @[simp] lemma eval_equiv_to_linear_map {ι : Type*} [fintype ι] (b : basis ι R M) : (b.eval_equiv).to_linear_map = dual.eval R M := rfl section open_locale classical variables [finite R M] [free R M] [nontrivial R] instance dual_free : free R (dual R M) := free.of_basis (free.choose_basis R M).dual_basis instance dual_finite : finite R (dual R M) := finite.of_basis (free.choose_basis R M).dual_basis end end comm_ring /-- `simp` normal form version of `total_dual_basis` -/ @[simp] lemma total_coord [comm_ring R] [add_comm_group M] [module R M] [fintype ι] (b : basis ι R M) (f : ι →₀ R) (i : ι) : finsupp.total ι (dual R M) R b.coord f (b i) = f i := by { haveI := classical.dec_eq ι, rw [← coe_dual_basis, total_dual_basis] } -- TODO(jmc): generalize to rings, once `module.rank` is generalized theorem dual_dim_eq [field K] [add_comm_group V] [module K V] [fintype ι] (b : basis ι K V) : cardinal.lift (module.rank K V) = module.rank K (dual K V) := begin classical, have := linear_equiv.lift_dim_eq b.to_dual_equiv, simp only [cardinal.lift_umax] at this, rw [this, ← cardinal.lift_umax], apply cardinal.lift_id, end end basis namespace module variables {K V : Type*} variables [field K] [add_comm_group V] [module K V] open module module.dual submodule linear_map cardinal basis finite_dimensional theorem eval_ker : (eval K V).ker = ⊥ := by { classical, exact (basis.of_vector_space K V).eval_ker } -- TODO(jmc): generalize to rings, once `module.rank` is generalized theorem dual_dim_eq [finite_dimensional K V] : cardinal.lift (module.rank K V) = module.rank K (dual K V) := (basis.of_vector_space K V).dual_dim_eq lemma erange_coe [finite_dimensional K V] : (eval K V).range = ⊤ := begin letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance, exact (basis.of_vector_space K V).eval_range end variables (K V) /-- A vector space is linearly equivalent to the dual of its dual space. -/ def eval_equiv [finite_dimensional K V] : V ≃ₗ[K] dual K (dual K V) := linear_equiv.of_bijective (eval K V) (ker_eq_bot.mp eval_ker) (range_eq_top.mp erange_coe) variables {K V} @[simp] lemma eval_equiv_to_linear_map [finite_dimensional K V] : (eval_equiv K V).to_linear_map = dual.eval K V := rfl end module section dual_pair open module variables {R M ι : Type*} variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι] /-- `e` and `ε` have characteristic properties of a basis and its dual -/ @[nolint has_inhabited_instance] structure dual_pair (e : ι → M) (ε : ι → (dual R M)) := (eval : ∀ i j : ι, ε i (e j) = if i = j then 1 else 0) (total : ∀ {m : M}, (∀ i, ε i m = 0) → m = 0) [finite : ∀ m : M, fintype {i | ε i m ≠ 0}] end dual_pair namespace dual_pair open module module.dual linear_map function variables {R M ι : Type*} variables [comm_ring R] [add_comm_group M] [module R M] variables {e : ι → M} {ε : ι → dual R M} /-- The coefficients of `v` on the basis `e` -/ def coeffs [decidable_eq ι] (h : dual_pair e ε) (m : M) : ι →₀ R := { to_fun := λ i, ε i m, support := by { haveI := h.finite m, exact {i : ι | ε i m ≠ 0}.to_finset }, mem_support_to_fun := by {intro i, rw set.mem_to_finset, exact iff.rfl } } @[simp] lemma coeffs_apply [decidable_eq ι] (h : dual_pair e ε) (m : M) (i : ι) : h.coeffs m i = ε i m := rfl /-- linear combinations of elements of `e`. This is a convenient abbreviation for `finsupp.total _ M R e l` -/ def lc {ι} (e : ι → M) (l : ι →₀ R) : M := l.sum (λ (i : ι) (a : R), a • (e i)) lemma lc_def (e : ι → M) (l : ι →₀ R) : lc e l = finsupp.total _ _ _ e l := rfl variables [decidable_eq ι] (h : dual_pair e ε) include h lemma dual_lc (l : ι →₀ R) (i : ι) : ε i (dual_pair.lc e l) = l i := begin erw linear_map.map_sum, simp only [h.eval, map_smul, smul_eq_mul], rw finset.sum_eq_single i, { simp }, { intros q q_in q_ne, simp [q_ne.symm] }, { intro p_not_in, simp [finsupp.not_mem_support_iff.1 p_not_in] }, end @[simp] lemma coeffs_lc (l : ι →₀ R) : h.coeffs (dual_pair.lc e l) = l := by { ext i, rw [h.coeffs_apply, h.dual_lc] } /-- For any m : M n, \sum_{p ∈ Q n} (ε p m) • e p = m -/ @[simp] lemma lc_coeffs (m : M) : dual_pair.lc e (h.coeffs m) = m := begin refine eq_of_sub_eq_zero (h.total _), intros i, simp [-sub_eq_add_neg, linear_map.map_sub, h.dual_lc, sub_eq_zero] end /-- `(h : dual_pair e ε).basis` shows the family of vectors `e` forms a basis. -/ @[simps] def basis : basis ι R M := basis.of_repr { to_fun := coeffs h, inv_fun := lc e, left_inv := lc_coeffs h, right_inv := coeffs_lc h, map_add' := λ v w, by { ext i, exact (ε i).map_add v w }, map_smul' := λ c v, by { ext i, exact (ε i).map_smul c v } } @[simp] lemma coe_basis : ⇑h.basis = e := by { ext i, rw basis.apply_eq_iff, ext j, rw [h.basis_repr_apply, coeffs_apply, h.eval, finsupp.single_apply], convert if_congr eq_comm rfl rfl } -- `convert` to get rid of a `decidable_eq` mismatch lemma mem_of_mem_span {H : set ι} {x : M} (hmem : x ∈ submodule.span R (e '' H)) : ∀ i : ι, ε i x ≠ 0 → i ∈ H := begin intros i hi, rcases (finsupp.mem_span_image_iff_total _).mp hmem with ⟨l, supp_l, rfl⟩, apply not_imp_comm.mp ((finsupp.mem_supported' _ _).mp supp_l i), rwa [← lc_def, h.dual_lc] at hi end lemma coe_dual_basis [fintype ι] : ⇑h.basis.dual_basis = ε := funext (λ i, h.basis.ext (λ j, by rw [h.basis.dual_basis_apply_self, h.coe_basis, h.eval, if_congr eq_comm rfl rfl])) end dual_pair namespace submodule universes u v w variables {R : Type u} {M : Type v} [comm_semiring R] [add_comm_monoid M] [module R M] variable {W : submodule R M} /-- The `dual_restrict` of a submodule `W` of `M` is the linear map from the dual of `M` to the dual of `W` such that the domain of each linear map is restricted to `W`. -/ def dual_restrict (W : submodule R M) : module.dual R M →ₗ[R] module.dual R W := linear_map.dom_restrict' W @[simp] lemma dual_restrict_apply (W : submodule R M) (φ : module.dual R M) (x : W) : W.dual_restrict φ x = φ (x : M) := rfl /-- The `dual_annihilator` of a submodule `W` is the set of linear maps `φ` such that `φ w = 0` for all `w ∈ W`. -/ def dual_annihilator {R : Type u} {M : Type v} [comm_semiring R] [add_comm_monoid M] [module R M] (W : submodule R M) : submodule R $ module.dual R M := W.dual_restrict.ker @[simp] lemma mem_dual_annihilator (φ : module.dual R M) : φ ∈ W.dual_annihilator ↔ ∀ w ∈ W, φ w = 0 := begin refine linear_map.mem_ker.trans _, simp_rw [linear_map.ext_iff, dual_restrict_apply], exact ⟨λ h w hw, h ⟨w, hw⟩, λ h w, h w.1 w.2⟩ end lemma dual_restrict_ker_eq_dual_annihilator (W : submodule R M) : W.dual_restrict.ker = W.dual_annihilator := rfl lemma dual_annihilator_sup_eq_inf_dual_annihilator (U V : submodule R M) : (U ⊔ V).dual_annihilator = U.dual_annihilator ⊓ V.dual_annihilator := begin ext φ, rw [mem_inf, mem_dual_annihilator, mem_dual_annihilator, mem_dual_annihilator], split; intro h, { refine ⟨_, _⟩; intros x hx, exact h x (mem_sup.2 ⟨x, hx, 0, zero_mem _, add_zero _⟩), exact h x (mem_sup.2 ⟨0, zero_mem _, x, hx, zero_add _⟩) }, { simp_rw mem_sup, rintro _ ⟨x, hx, y, hy, rfl⟩, rw [linear_map.map_add, h.1 _ hx, h.2 _ hy, add_zero] } end /-- The pullback of a submodule in the dual space along the evaluation map. -/ def dual_annihilator_comap (Φ : submodule R (module.dual R M)) : submodule R M := Φ.dual_annihilator.comap (module.dual.eval R M) lemma mem_dual_annihilator_comap_iff {Φ : submodule R (module.dual R M)} (x : M) : x ∈ Φ.dual_annihilator_comap ↔ ∀ φ ∈ Φ, (φ x : R) = 0 := by simp_rw [dual_annihilator_comap, mem_comap, mem_dual_annihilator, module.dual.eval_apply] end submodule namespace subspace open submodule linear_map universes u v w -- We work in vector spaces because `exists_is_compl` only hold for vector spaces variables {K : Type u} {V : Type v} [field K] [add_comm_group V] [module K V] /-- Given a subspace `W` of `V` and an element of its dual `φ`, `dual_lift W φ` is the natural extension of `φ` to an element of the dual of `V`. That is, `dual_lift W φ` sends `w ∈ W` to `φ x` and `x` in the complement of `W` to `0`. -/ noncomputable def dual_lift (W : subspace K V) : module.dual K W →ₗ[K] module.dual K V := let h := classical.indefinite_description _ W.exists_is_compl in (linear_map.of_is_compl_prod h.2).comp (linear_map.inl _ _ _) variable {W : subspace K V} @[simp] lemma dual_lift_of_subtype {φ : module.dual K W} (w : W) : W.dual_lift φ (w : V) = φ w := by { erw of_is_compl_left_apply _ w, refl } lemma dual_lift_of_mem {φ : module.dual K W} {w : V} (hw : w ∈ W) : W.dual_lift φ w = φ ⟨w, hw⟩ := by convert dual_lift_of_subtype ⟨w, hw⟩ @[simp] lemma dual_restrict_comp_dual_lift (W : subspace K V) : W.dual_restrict.comp W.dual_lift = 1 := by { ext φ x, simp } lemma dual_restrict_left_inverse (W : subspace K V) : function.left_inverse W.dual_restrict W.dual_lift := λ x, show W.dual_restrict.comp W.dual_lift x = x, by { rw [dual_restrict_comp_dual_lift], refl } lemma dual_lift_right_inverse (W : subspace K V) : function.right_inverse W.dual_lift W.dual_restrict := W.dual_restrict_left_inverse lemma dual_restrict_surjective : function.surjective W.dual_restrict := W.dual_lift_right_inverse.surjective lemma dual_lift_injective : function.injective W.dual_lift := W.dual_restrict_left_inverse.injective /-- The quotient by the `dual_annihilator` of a subspace is isomorphic to the dual of that subspace. -/ noncomputable def quot_annihilator_equiv (W : subspace K V) : (module.dual K V ⧸ W.dual_annihilator) ≃ₗ[K] module.dual K W := (quot_equiv_of_eq _ _ W.dual_restrict_ker_eq_dual_annihilator).symm.trans $ W.dual_restrict.quot_ker_equiv_of_surjective dual_restrict_surjective /-- The natural isomorphism forom the dual of a subspace `W` to `W.dual_lift.range`. -/ noncomputable def dual_equiv_dual (W : subspace K V) : module.dual K W ≃ₗ[K] W.dual_lift.range := linear_equiv.of_injective _ dual_lift_injective lemma dual_equiv_dual_def (W : subspace K V) : W.dual_equiv_dual.to_linear_map = W.dual_lift.range_restrict := rfl @[simp] lemma dual_equiv_dual_apply (φ : module.dual K W) : W.dual_equiv_dual φ = ⟨W.dual_lift φ, mem_range.2 ⟨φ, rfl⟩⟩ := rfl section open_locale classical open finite_dimensional variables {V₁ : Type*} [add_comm_group V₁] [module K V₁] instance [H : finite_dimensional K V] : finite_dimensional K (module.dual K V) := by apply_instance variables [finite_dimensional K V] [finite_dimensional K V₁] @[simp] lemma dual_finrank_eq : finrank K (module.dual K V) = finrank K V := linear_equiv.finrank_eq (basis.of_vector_space K V).to_dual_equiv.symm /-- The quotient by the dual is isomorphic to its dual annihilator. -/ noncomputable def quot_dual_equiv_annihilator (W : subspace K V) : (module.dual K V ⧸ W.dual_lift.range) ≃ₗ[K] W.dual_annihilator := linear_equiv.quot_equiv_of_quot_equiv $ linear_equiv.trans W.quot_annihilator_equiv W.dual_equiv_dual /-- The quotient by a subspace is isomorphic to its dual annihilator. -/ noncomputable def quot_equiv_annihilator (W : subspace K V) : (V ⧸ W) ≃ₗ[K] W.dual_annihilator := begin refine _ ≪≫ₗ W.quot_dual_equiv_annihilator, refine linear_equiv.quot_equiv_of_equiv _ (basis.of_vector_space K V).to_dual_equiv, exact (basis.of_vector_space K W).to_dual_equiv.trans W.dual_equiv_dual end open finite_dimensional @[simp] lemma finrank_dual_annihilator_comap_eq {Φ : subspace K (module.dual K V)} : finrank K Φ.dual_annihilator_comap = finrank K Φ.dual_annihilator := begin rw [submodule.dual_annihilator_comap, ← module.eval_equiv_to_linear_map], exact linear_equiv.finrank_eq (linear_equiv.of_submodule' _ _), end lemma finrank_add_finrank_dual_annihilator_comap_eq (W : subspace K (module.dual K V)) : finrank K W + finrank K W.dual_annihilator_comap = finrank K V := begin rw [finrank_dual_annihilator_comap_eq, W.quot_equiv_annihilator.finrank_eq.symm, add_comm, submodule.finrank_quotient_add_finrank, subspace.dual_finrank_eq], end end end subspace open module section dual_map variables {R : Type*} [comm_semiring R] {M₁ : Type*} {M₂ : Type*} variables [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂] /-- Given a linear map `f : M₁ →ₗ[R] M₂`, `f.dual_map` is the linear map between the dual of `M₂` and `M₁` such that it maps the functional `φ` to `φ ∘ f`. -/ def linear_map.dual_map (f : M₁ →ₗ[R] M₂) : dual R M₂ →ₗ[R] dual R M₁ := linear_map.lcomp R R f @[simp] lemma linear_map.dual_map_apply (f : M₁ →ₗ[R] M₂) (g : dual R M₂) (x : M₁) : f.dual_map g x = g (f x) := linear_map.lcomp_apply f g x @[simp] lemma linear_map.dual_map_id : (linear_map.id : M₁ →ₗ[R] M₁).dual_map = linear_map.id := by { ext, refl } lemma linear_map.dual_map_comp_dual_map {M₃ : Type*} [add_comm_group M₃] [module R M₃] (f : M₁ →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : f.dual_map.comp g.dual_map = (g.comp f).dual_map := rfl /-- The `linear_equiv` version of `linear_map.dual_map`. -/ def linear_equiv.dual_map (f : M₁ ≃ₗ[R] M₂) : dual R M₂ ≃ₗ[R] dual R M₁ := { inv_fun := f.symm.to_linear_map.dual_map, left_inv := begin intro φ, ext x, simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map, linear_map.to_fun_eq_coe, linear_equiv.apply_symm_apply] end, right_inv := begin intro φ, ext x, simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map, linear_map.to_fun_eq_coe, linear_equiv.symm_apply_apply] end, .. f.to_linear_map.dual_map } @[simp] lemma linear_equiv.dual_map_apply (f : M₁ ≃ₗ[R] M₂) (g : dual R M₂) (x : M₁) : f.dual_map g x = g (f x) := linear_map.lcomp_apply f g x @[simp] lemma linear_equiv.dual_map_refl : (linear_equiv.refl R M₁).dual_map = linear_equiv.refl R (dual R M₁) := by { ext, refl } @[simp] lemma linear_equiv.dual_map_symm {f : M₁ ≃ₗ[R] M₂} : (linear_equiv.dual_map f).symm = linear_equiv.dual_map f.symm := rfl lemma linear_equiv.dual_map_trans {M₃ : Type*} [add_comm_group M₃] [module R M₃] (f : M₁ ≃ₗ[R] M₂) (g : M₂ ≃ₗ[R] M₃) : g.dual_map.trans f.dual_map = (f.trans g).dual_map := rfl end dual_map namespace linear_map variables {R : Type*} [comm_semiring R] {M₁ : Type*} {M₂ : Type*} variables [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂] variable (f : M₁ →ₗ[R] M₂) lemma ker_dual_map_eq_dual_annihilator_range : f.dual_map.ker = f.range.dual_annihilator := begin ext φ, split; intro hφ, { rw mem_ker at hφ, rw submodule.mem_dual_annihilator, rintro y ⟨x, rfl⟩, rw [← dual_map_apply, hφ, zero_apply] }, { ext x, rw dual_map_apply, rw submodule.mem_dual_annihilator at hφ, exact hφ (f x) ⟨x, rfl⟩ } end lemma range_dual_map_le_dual_annihilator_ker : f.dual_map.range ≤ f.ker.dual_annihilator := begin rintro _ ⟨ψ, rfl⟩, simp_rw [submodule.mem_dual_annihilator, mem_ker], rintro x hx, rw [dual_map_apply, hx, map_zero] end section finite_dimensional variables {K : Type*} [field K] {V₁ : Type*} {V₂ : Type*} variables [add_comm_group V₁] [module K V₁] [add_comm_group V₂] [module K V₂] open finite_dimensional variable [finite_dimensional K V₂] @[simp] lemma finrank_range_dual_map_eq_finrank_range (f : V₁ →ₗ[K] V₂) : finrank K f.dual_map.range = finrank K f.range := begin have := submodule.finrank_quotient_add_finrank f.range, rw [(subspace.quot_equiv_annihilator f.range).finrank_eq, ← ker_dual_map_eq_dual_annihilator_range] at this, conv_rhs at this { rw ← subspace.dual_finrank_eq }, refine add_left_injective (finrank K f.dual_map.ker) _, change _ + _ = _ + _, rw [finrank_range_add_finrank_ker f.dual_map, add_comm, this], end lemma range_dual_map_eq_dual_annihilator_ker [finite_dimensional K V₁] (f : V₁ →ₗ[K] V₂) : f.dual_map.range = f.ker.dual_annihilator := begin refine eq_of_le_of_finrank_eq f.range_dual_map_le_dual_annihilator_ker _, have := submodule.finrank_quotient_add_finrank f.ker, rw (subspace.quot_equiv_annihilator f.ker).finrank_eq at this, refine add_left_injective (finrank K f.ker) _, simp_rw [this, finrank_range_dual_map_eq_finrank_range], exact finrank_range_add_finrank_ker f, end end finite_dimensional section field variables {K V : Type*} variables [field K] [add_comm_group V] [module K V] lemma dual_pairing_nondegenerate : (dual_pairing K V).nondegenerate := begin refine ⟨separating_left_iff_ker_eq_bot.mpr ker_id, _⟩, intros x, contrapose, rintros hx : x ≠ 0, rw [not_forall], let f : V →ₗ[K] K := classical.some (linear_pmap.mk_span_singleton x 1 hx).to_fun.exists_extend, use [f], refine ne_zero_of_eq_one _, have h : f.comp (K ∙ x).subtype = (linear_pmap.mk_span_singleton x 1 hx).to_fun := classical.some_spec (linear_pmap.mk_span_singleton x (1 : K) hx).to_fun.exists_extend, exact (fun_like.congr_fun h _).trans (linear_pmap.mk_span_singleton_apply _ hx _), end end field end linear_map namespace tensor_product variables (R : Type*) (M : Type*) (N : Type*) variables {ι κ : Type*} variables [decidable_eq ι] [decidable_eq κ] variables [fintype ι] [fintype κ] open_locale big_operators open_locale tensor_product local attribute [ext] tensor_product.ext open tensor_product open linear_map section variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] variables [module R M] [module R N] /-- The canonical linear map from `dual M ⊗ dual N` to `dual (M ⊗ N)`, sending `f ⊗ g` to the composition of `tensor_product.map f g` with the natural isomorphism `R ⊗ R ≃ R`. -/ def dual_distrib : (dual R M) ⊗[R] (dual R N) →ₗ[R] dual R (M ⊗[R] N) := (comp_right ↑(tensor_product.lid R R)) ∘ₗ hom_tensor_hom_map R M N R R variables {R M N} @[simp] lemma dual_distrib_apply (f : dual R M) (g : dual R N) (m : M) (n : N) : dual_distrib R M N (f ⊗ₜ g) (m ⊗ₜ n) = f m * g n := by simp only [dual_distrib, coe_comp, function.comp_app, hom_tensor_hom_map_apply, comp_right_apply, linear_equiv.coe_coe, map_tmul, lid_tmul, algebra.id.smul_eq_mul] end variables {R M N} variables [comm_ring R] [add_comm_group M] [add_comm_group N] variables [module R M] [module R N] /-- An inverse to `dual_tensor_dual_map` given bases. -/ noncomputable def dual_distrib_inv_of_basis (b : basis ι R M) (c : basis κ R N) : dual R (M ⊗[R] N) →ₗ[R] (dual R M) ⊗[R] (dual R N) := ∑ i j, (ring_lmap_equiv_self R ℕ _).symm (b.dual_basis i ⊗ₜ c.dual_basis j) ∘ₗ applyₗ (c j) ∘ₗ applyₗ (b i) ∘ₗ (lcurry R M N R) @[simp] lemma dual_distrib_inv_of_basis_apply (b : basis ι R M) (c : basis κ R N) (f : dual R (M ⊗[R] N)) : dual_distrib_inv_of_basis b c f = ∑ i j, (f (b i ⊗ₜ c j)) • (b.dual_basis i ⊗ₜ c.dual_basis j) := by simp [dual_distrib_inv_of_basis] /-- A linear equivalence between `dual M ⊗ dual N` and `dual (M ⊗ N)` given bases for `M` and `N`. It sends `f ⊗ g` to the composition of `tensor_product.map f g` with the natural isomorphism `R ⊗ R ≃ R`. -/ @[simps] noncomputable def dual_distrib_equiv_of_basis (b : basis ι R M) (c : basis κ R N) : (dual R M) ⊗[R] (dual R N) ≃ₗ[R] dual R (M ⊗[R] N) := begin refine linear_equiv.of_linear (dual_distrib R M N) (dual_distrib_inv_of_basis b c) _ _, { ext f m n, have h : ∀ (r s : R), r • s = s • r := is_commutative.comm, simp only [compr₂_apply, mk_apply, comp_apply, id_apply, dual_distrib_inv_of_basis_apply, linear_map.map_sum, map_smul, sum_apply, smul_apply, dual_distrib_apply, h (f _) _, ← f.map_smul, ←f.map_sum, ←smul_tmul_smul, ←tmul_sum, ←sum_tmul, basis.coe_dual_basis, basis.coord_apply, basis.sum_repr] }, { ext f g, simp only [compr₂_apply, mk_apply, comp_apply, id_apply, dual_distrib_inv_of_basis_apply, dual_distrib_apply, ←smul_tmul_smul, ←tmul_sum, ←sum_tmul, basis.coe_dual_basis, basis.sum_dual_apply_smul_coord] } end variables (R M N) variables [module.finite R M] [module.finite R N] [module.free R M] [module.free R N] variables [nontrivial R] open_locale classical /-- A linear equivalence between `dual M ⊗ dual N` and `dual (M ⊗ N)` when `M` and `N` are finite free modules. It sends `f ⊗ g` to the composition of `tensor_product.map f g` with the natural isomorphism `R ⊗ R ≃ R`. -/ @[simp] noncomputable def dual_distrib_equiv : (dual R M) ⊗[R] (dual R N) ≃ₗ[R] dual R (M ⊗[R] N) := dual_distrib_equiv_of_basis (module.free.choose_basis R M) (module.free.choose_basis R N) end tensor_product