/- Copyright (c) 2021 Chris Birkbeck. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Birkbeck -/ import linear_algebra.matrix.nonsingular_inverse import linear_algebra.special_linear_group /-! # The General Linear group $GL(n, R)$ This file defines the elements of the General Linear group `general_linear_group n R`, consisting of all invertible `n` by `n` `R`-matrices. ## Main definitions * `matrix.general_linear_group` is the type of matrices over R which are units in the matrix ring. * `matrix.GL_pos` gives the subgroup of matrices with positive determinant (over a linear ordered ring). ## Tags matrix group, group, matrix inverse -/ namespace matrix universes u v open_locale matrix open linear_map -- disable this instance so we do not accidentally use it in lemmas. local attribute [-instance] special_linear_group.has_coe_to_fun /-- `GL n R` is the group of `n` by `n` `R`-matrices with unit determinant. Defined as a subtype of matrices-/ abbreviation general_linear_group (n : Type u) (R : Type v) [decidable_eq n] [fintype n] [comm_ring R] : Type* := (matrix n n R)ˣ notation `GL` := general_linear_group namespace general_linear_group variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] /-- The determinant of a unit matrix is itself a unit. -/ @[simps] def det : GL n R →* Rˣ := { to_fun := λ A, { val := (↑A : matrix n n R).det, inv := (↑(A⁻¹) : matrix n n R).det, val_inv := by rw [←det_mul, ←mul_eq_mul, A.mul_inv, det_one], inv_val := by rw [←det_mul, ←mul_eq_mul, A.inv_mul, det_one]}, map_one' := units.ext det_one, map_mul' := λ A B, units.ext $ det_mul _ _ } /--The `GL n R` and `general_linear_group R n` groups are multiplicatively equivalent-/ def to_lin : (GL n R) ≃* (linear_map.general_linear_group R (n → R)) := units.map_equiv to_lin_alg_equiv'.to_mul_equiv /--Given a matrix with invertible determinant we get an element of `GL n R`-/ def mk' (A : matrix n n R) (h : invertible (matrix.det A)) : GL n R := unit_of_det_invertible A /--Given a matrix with unit determinant we get an element of `GL n R`-/ noncomputable def mk'' (A : matrix n n R) (h : is_unit (matrix.det A)) : GL n R := nonsing_inv_unit A h /--Given a matrix with non-zero determinant over a field, we get an element of `GL n K`-/ def mk_of_det_ne_zero {K : Type*} [field K] (A : matrix n n K) (h : matrix.det A ≠ 0) : GL n K := mk' A (invertible_of_nonzero h) lemma ext_iff (A B : GL n R) : A = B ↔ (∀ i j, (A : matrix n n R) i j = (B : matrix n n R) i j) := units.ext_iff.trans matrix.ext_iff.symm /-- Not marked `@[ext]` as the `ext` tactic already solves this. -/ lemma ext ⦃A B : GL n R⦄ (h : ∀ i j, (A : matrix n n R) i j = (B : matrix n n R) i j) : A = B := units.ext $ matrix.ext h section coe_lemmas variables (A B : GL n R) @[simp] lemma coe_mul : ↑(A * B) = (↑A : matrix n n R) ⬝ (↑B : matrix n n R) := rfl @[simp] lemma coe_one : ↑(1 : GL n R) = (1 : matrix n n R) := rfl lemma coe_inv : ↑(A⁻¹) = (↑A : matrix n n R)⁻¹ := begin letI := A.invertible, exact inv_of_eq_nonsing_inv (↑A : matrix n n R), end /-- An element of the matrix general linear group on `(n) [fintype n]` can be considered as an element of the endomorphism general linear group on `n → R`. -/ def to_linear : general_linear_group n R ≃* linear_map.general_linear_group R (n → R) := units.map_equiv matrix.to_lin_alg_equiv'.to_ring_equiv.to_mul_equiv -- Note that without the `@` and `‹_›`, lean infers `λ a b, _inst_1 a b` instead of `_inst_1` as the -- decidability argument, which prevents `simp` from obtaining the instance by unification. -- These `λ a b, _inst a b` terms also appear in the type of `A`, but simp doesn't get confused by -- them so for now we do not care. @[simp] lemma coe_to_linear : (@to_linear n ‹_› ‹_› _ _ A : (n → R) →ₗ[R] (n → R)) = matrix.mul_vec_lin A := rfl @[simp] lemma to_linear_apply (v : n → R) : (@to_linear n ‹_› ‹_› _ _ A) v = matrix.mul_vec_lin ↑A v := rfl end coe_lemmas end general_linear_group namespace special_linear_group variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] instance has_coe_to_general_linear_group : has_coe (special_linear_group n R) (GL n R) := ⟨λ A, ⟨↑A, ↑(A⁻¹), congr_arg coe (mul_right_inv A), congr_arg coe (mul_left_inv A)⟩⟩ @[simp] lemma coe_to_GL_det (g : special_linear_group n R) : (g : GL n R).det = 1 := units.ext g.prop end special_linear_group section variables {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R ] section variables (n R) /-- This is the subgroup of `nxn` matrices with entries over a linear ordered ring and positive determinant. -/ def GL_pos : subgroup (GL n R) := (units.pos_subgroup R).comap general_linear_group.det end @[simp] lemma mem_GL_pos (A : GL n R) : A ∈ GL_pos n R ↔ 0 < (A.det : R) := iff.rfl end section has_neg variables {n : Type u} {R : Type v} [decidable_eq n] [fintype n] [linear_ordered_comm_ring R ] [fact (even (fintype.card n))] /-- Formal operation of negation on general linear group on even cardinality `n` given by negating each element. -/ instance : has_neg (GL_pos n R) := ⟨λ g, ⟨-g, begin rw [mem_GL_pos, general_linear_group.coe_det_apply, units.coe_neg, det_neg, (fact.out $ even $ fintype.card n).neg_one_pow, one_mul], exact g.prop, end⟩⟩ @[simp] lemma GL_pos.coe_neg_GL (g : GL_pos n R) : ↑(-g) = -(g : GL n R) := rfl @[simp] lemma GL_pos.coe_neg (g : GL_pos n R) : ↑(-g) = -(g : matrix n n R) := rfl @[simp] lemma GL_pos.coe_neg_apply (g : GL_pos n R) (i j : n) : (↑(-g) : matrix n n R) i j = -((↑g : matrix n n R) i j) := rfl instance : has_distrib_neg (GL_pos n R) := subtype.coe_injective.has_distrib_neg _ GL_pos.coe_neg_GL (GL_pos n R).coe_mul end has_neg namespace special_linear_group variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [linear_ordered_comm_ring R] /-- `special_linear_group n R` embeds into `GL_pos n R` -/ def to_GL_pos : special_linear_group n R →* GL_pos n R := { to_fun := λ A, ⟨(A : GL n R), show 0 < (↑A : matrix n n R).det, from A.prop.symm ▸ zero_lt_one⟩, map_one' := subtype.ext $ units.ext $ rfl, map_mul' := λ A₁ A₂, subtype.ext $ units.ext $ rfl } instance : has_coe (special_linear_group n R) (GL_pos n R) := ⟨to_GL_pos⟩ lemma coe_eq_to_GL_pos : (coe : special_linear_group n R → GL_pos n R) = to_GL_pos := rfl lemma to_GL_pos_injective : function.injective (to_GL_pos : special_linear_group n R → GL_pos n R) := (show function.injective ((coe : GL_pos n R → matrix n n R) ∘ to_GL_pos), from subtype.coe_injective).of_comp /-- Coercing a `special_linear_group` via `GL_pos` and `GL` is the same as coercing striaght to a matrix. -/ @[simp] lemma coe_GL_pos_coe_GL_coe_matrix (g : special_linear_group n R) : (↑(↑(↑g : GL_pos n R) : GL n R) : matrix n n R) = ↑g := rfl @[simp] lemma coe_to_GL_pos_to_GL_det (g : special_linear_group n R) : ((g : GL_pos n R) : GL n R).det = 1 := units.ext g.prop variable [fact (even (fintype.card n))] @[norm_cast] lemma coe_GL_pos_neg (g : special_linear_group n R) : ↑(-g) = -(↑g : GL_pos n R) := subtype.ext $ units.ext rfl end special_linear_group section examples /-- The matrix [a, -b; b, a] (inspired by multiplication by a complex number); it is an element of $GL_2(R)$ if `a ^ 2 + b ^ 2` is nonzero. -/ @[simps coe {fully_applied := ff}] def plane_conformal_matrix {R} [field R] (a b : R) (hab : a ^ 2 + b ^ 2 ≠ 0) : matrix.general_linear_group (fin 2) R := general_linear_group.mk_of_det_ne_zero !![a, -b; b, a] (by simpa [det_fin_two, sq] using hab) /- TODO: Add Iwasawa matrices `n_x=!![1,x; 0,1]`, `a_t=!![exp(t/2),0;0,exp(-t/2)]` and `k_θ=!![cos θ, sin θ; -sin θ, cos θ]` -/ end examples namespace general_linear_group variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] -- this section should be last to ensure we do not use it in lemmas section coe_fn_instance /-- This instance is here for convenience, but is not the simp-normal form. -/ instance : has_coe_to_fun (GL n R) (λ _, n → n → R) := { coe := λ A, A.val } @[simp] lemma coe_fn_eq_coe (A : GL n R) : ⇑A = (↑A : matrix n n R) := rfl end coe_fn_instance end general_linear_group end matrix