/- Copyright (c) 2021 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers -/ import linear_algebra.basis import linear_algebra.multilinear.basic /-! # Multilinear maps in relation to bases. This file proves lemmas about the action of multilinear maps on basis vectors. ## TODO * Refactor the proofs in terms of bases of tensor products, once there is an equivalent of `basis.tensor_product` for `pi_tensor_product`. -/ open multilinear_map variables {R : Type*} {ι : Type*} {n : ℕ} {M : fin n → Type*} {M₂ : Type*} {M₃ : Type*} variables [comm_semiring R] [add_comm_monoid M₂] [add_comm_monoid M₃] [∀i, add_comm_monoid (M i)] variables [∀i, module R (M i)] [module R M₂] [module R M₃] /-- Two multilinear maps indexed by `fin n` are equal if they are equal when all arguments are basis vectors. -/ lemma basis.ext_multilinear_fin {f g : multilinear_map R M M₂} {ι₁ : fin n → Type*} (e : Π i, basis (ι₁ i) R (M i)) (h : ∀ (v : Π i, ι₁ i), f (λ i, e i (v i)) = g (λ i, e i (v i))) : f = g := begin unfreezingI { induction n with m hm }, { ext x, convert h fin_zero_elim }, { apply function.left_inverse.injective uncurry_curry_left, refine basis.ext (e 0) _, intro i, apply hm (fin.tail e), intro j, convert h (fin.cons i j), iterate 2 { rw curry_left_apply, congr' 1 with x, refine fin.cases rfl (λ x, _) x, dsimp [fin.tail], rw [fin.cons_succ, fin.cons_succ], } } end /-- Two multilinear maps indexed by a `fintype` are equal if they are equal when all arguments are basis vectors. Unlike `basis.ext_multilinear_fin`, this only uses a single basis; a dependently-typed version would still be true, but the proof would need a dependently-typed version of `dom_dom_congr`. -/ lemma basis.ext_multilinear [decidable_eq ι] [fintype ι] {f g : multilinear_map R (λ i : ι, M₂) M₃} {ι₁ : Type*} (e : basis ι₁ R M₂) (h : ∀ v : ι → ι₁, f (λ i, e (v i)) = g (λ i, e (v i))) : f = g := (dom_dom_congr_eq_iff (fintype.equiv_fin ι) f g).mp $ basis.ext_multilinear_fin (λ i, e) (λ i, h (i ∘ _))