/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov, Eric Wieser -/ import linear_algebra.span import order.partial_sups import algebra.algebra.basic /-! ### Products of modules This file defines constructors for linear maps whose domains or codomains are products. It contains theorems relating these to each other, as well as to `submodule.prod`, `submodule.map`, `submodule.comap`, `linear_map.range`, and `linear_map.ker`. ## Main definitions - products in the domain: - `linear_map.fst` - `linear_map.snd` - `linear_map.coprod` - `linear_map.prod_ext` - products in the codomain: - `linear_map.inl` - `linear_map.inr` - `linear_map.prod` - products in both domain and codomain: - `linear_map.prod_map` - `linear_equiv.prod_map` - `linear_equiv.skew_prod` -/ universes u v w x y z u' v' w' y' variables {R : Type u} {K : Type u'} {M : Type v} {V : Type v'} {M₂ : Type w} {V₂ : Type w'} variables {M₃ : Type y} {V₃ : Type y'} {M₄ : Type z} {ι : Type x} variables {M₅ M₆ : Type*} section prod namespace linear_map variables (S : Type*) [semiring R] [semiring S] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables [add_comm_monoid M₅] [add_comm_monoid M₆] variables [module R M] [module R M₂] [module R M₃] [module R M₄] variables [module R M₅] [module R M₆] variables (f : M →ₗ[R] M₂) section variables (R M M₂) /-- The first projection of a product is a linear map. -/ def fst : M × M₂ →ₗ[R] M := { to_fun := prod.fst, map_add' := λ x y, rfl, map_smul' := λ x y, rfl } /-- The second projection of a product is a linear map. -/ def snd : M × M₂ →ₗ[R] M₂ := { to_fun := prod.snd, map_add' := λ x y, rfl, map_smul' := λ x y, rfl } end @[simp] theorem fst_apply (x : M × M₂) : fst R M M₂ x = x.1 := rfl @[simp] theorem snd_apply (x : M × M₂) : snd R M M₂ x = x.2 := rfl theorem fst_surjective : function.surjective (fst R M M₂) := λ x, ⟨(x, 0), rfl⟩ theorem snd_surjective : function.surjective (snd R M M₂) := λ x, ⟨(0, x), rfl⟩ /-- The prod of two linear maps is a linear map. -/ @[simps] def prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : (M →ₗ[R] M₂ × M₃) := { to_fun := pi.prod f g, map_add' := λ x y, by simp only [pi.prod, prod.mk_add_mk, map_add], map_smul' := λ c x, by simp only [pi.prod, prod.smul_mk, map_smul, ring_hom.id_apply] } lemma coe_prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : ⇑(f.prod g) = pi.prod f g := rfl @[simp] theorem fst_prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : (fst R M₂ M₃).comp (prod f g) = f := by ext; refl @[simp] theorem snd_prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : (snd R M₂ M₃).comp (prod f g) = g := by ext; refl @[simp] theorem pair_fst_snd : prod (fst R M M₂) (snd R M M₂) = linear_map.id := fun_like.coe_injective pi.prod_fst_snd /-- Taking the product of two maps with the same domain is equivalent to taking the product of their codomains. See note [bundled maps over different rings] for why separate `R` and `S` semirings are used. -/ @[simps] def prod_equiv [module S M₂] [module S M₃] [smul_comm_class R S M₂] [smul_comm_class R S M₃] : ((M →ₗ[R] M₂) × (M →ₗ[R] M₃)) ≃ₗ[S] (M →ₗ[R] M₂ × M₃) := { to_fun := λ f, f.1.prod f.2, inv_fun := λ f, ((fst _ _ _).comp f, (snd _ _ _).comp f), left_inv := λ f, by ext; refl, right_inv := λ f, by ext; refl, map_add' := λ a b, rfl, map_smul' := λ r a, rfl } section variables (R M M₂) /-- The left injection into a product is a linear map. -/ def inl : M →ₗ[R] M × M₂ := prod linear_map.id 0 /-- The right injection into a product is a linear map. -/ def inr : M₂ →ₗ[R] M × M₂ := prod 0 linear_map.id theorem range_inl : range (inl R M M₂) = ker (snd R M M₂) := begin ext x, simp only [mem_ker, mem_range], split, { rintros ⟨y, rfl⟩, refl }, { intro h, exact ⟨x.fst, prod.ext rfl h.symm⟩ } end theorem ker_snd : ker (snd R M M₂) = range (inl R M M₂) := eq.symm $ range_inl R M M₂ theorem range_inr : range (inr R M M₂) = ker (fst R M M₂) := begin ext x, simp only [mem_ker, mem_range], split, { rintros ⟨y, rfl⟩, refl }, { intro h, exact ⟨x.snd, prod.ext h.symm rfl⟩ } end theorem ker_fst : ker (fst R M M₂) = range (inr R M M₂) := eq.symm $ range_inr R M M₂ end @[simp] theorem coe_inl : (inl R M M₂ : M → M × M₂) = λ x, (x, 0) := rfl theorem inl_apply (x : M) : inl R M M₂ x = (x, 0) := rfl @[simp] theorem coe_inr : (inr R M M₂ : M₂ → M × M₂) = prod.mk 0 := rfl theorem inr_apply (x : M₂) : inr R M M₂ x = (0, x) := rfl theorem inl_eq_prod : inl R M M₂ = prod linear_map.id 0 := rfl theorem inr_eq_prod : inr R M M₂ = prod 0 linear_map.id := rfl theorem inl_injective : function.injective (inl R M M₂) := λ _, by simp theorem inr_injective : function.injective (inr R M M₂) := λ _, by simp /-- The coprod function `λ x : M × M₂, f x.1 + g x.2` is a linear map. -/ def coprod (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) : M × M₂ →ₗ[R] M₃ := f.comp (fst _ _ _) + g.comp (snd _ _ _) @[simp] theorem coprod_apply (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (x : M × M₂) : coprod f g x = f x.1 + g x.2 := rfl @[simp] theorem coprod_inl (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) : (coprod f g).comp (inl R M M₂) = f := by ext; simp only [map_zero, add_zero, coprod_apply, inl_apply, comp_apply] @[simp] theorem coprod_inr (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) : (coprod f g).comp (inr R M M₂) = g := by ext; simp only [map_zero, coprod_apply, inr_apply, zero_add, comp_apply] @[simp] theorem coprod_inl_inr : coprod (inl R M M₂) (inr R M M₂) = linear_map.id := by ext; simp only [prod.mk_add_mk, add_zero, id_apply, coprod_apply, inl_apply, inr_apply, zero_add] theorem comp_coprod (f : M₃ →ₗ[R] M₄) (g₁ : M →ₗ[R] M₃) (g₂ : M₂ →ₗ[R] M₃) : f.comp (g₁.coprod g₂) = (f.comp g₁).coprod (f.comp g₂) := ext $ λ x, f.map_add (g₁ x.1) (g₂ x.2) theorem fst_eq_coprod : fst R M M₂ = coprod linear_map.id 0 := by ext; simp theorem snd_eq_coprod : snd R M M₂ = coprod 0 linear_map.id := by ext; simp @[simp] theorem coprod_comp_prod (f : M₂ →ₗ[R] M₄) (g : M₃ →ₗ[R] M₄) (f' : M →ₗ[R] M₂) (g' : M →ₗ[R] M₃) : (f.coprod g).comp (f'.prod g') = f.comp f' + g.comp g' := rfl @[simp] lemma coprod_map_prod (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (S : submodule R M) (S' : submodule R M₂) : (submodule.prod S S').map (linear_map.coprod f g) = S.map f ⊔ S'.map g := set_like.coe_injective $ begin simp only [linear_map.coprod_apply, submodule.coe_sup, submodule.map_coe], rw [←set.image2_add, set.image2_image_left, set.image2_image_right], exact set.image_prod (λ m m₂, f m + g m₂), end /-- Taking the product of two maps with the same codomain is equivalent to taking the product of their domains. See note [bundled maps over different rings] for why separate `R` and `S` semirings are used. -/ @[simps] def coprod_equiv [module S M₃] [smul_comm_class R S M₃] : ((M →ₗ[R] M₃) × (M₂ →ₗ[R] M₃)) ≃ₗ[S] (M × M₂ →ₗ[R] M₃) := { to_fun := λ f, f.1.coprod f.2, inv_fun := λ f, (f.comp (inl _ _ _), f.comp (inr _ _ _)), left_inv := λ f, by simp only [prod.mk.eta, coprod_inl, coprod_inr], right_inv := λ f, by simp only [←comp_coprod, comp_id, coprod_inl_inr], map_add' := λ a b, by { ext, simp only [prod.snd_add, add_apply, coprod_apply, prod.fst_add, add_add_add_comm] }, map_smul' := λ r a, by { dsimp, ext, simp only [smul_add, smul_apply, prod.smul_snd, prod.smul_fst, coprod_apply] } } theorem prod_ext_iff {f g : M × M₂ →ₗ[R] M₃} : f = g ↔ f.comp (inl _ _ _) = g.comp (inl _ _ _) ∧ f.comp (inr _ _ _) = g.comp (inr _ _ _) := (coprod_equiv ℕ).symm.injective.eq_iff.symm.trans prod.ext_iff /-- Split equality of linear maps from a product into linear maps over each component, to allow `ext` to apply lemmas specific to `M →ₗ M₃` and `M₂ →ₗ M₃`. See note [partially-applied ext lemmas]. -/ @[ext] theorem prod_ext {f g : M × M₂ →ₗ[R] M₃} (hl : f.comp (inl _ _ _) = g.comp (inl _ _ _)) (hr : f.comp (inr _ _ _) = g.comp (inr _ _ _)) : f = g := prod_ext_iff.2 ⟨hl, hr⟩ /-- `prod.map` of two linear maps. -/ def prod_map (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₄) : (M × M₂) →ₗ[R] (M₃ × M₄) := (f.comp (fst R M M₂)).prod (g.comp (snd R M M₂)) @[simp] theorem prod_map_apply (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₄) (x) : f.prod_map g x = (f x.1, g x.2) := rfl lemma prod_map_comap_prod (f : M →ₗ[R] M₂) (g : M₃ →ₗ[R] M₄) (S : submodule R M₂) (S' : submodule R M₄) : (submodule.prod S S').comap (linear_map.prod_map f g) = (S.comap f).prod (S'.comap g) := set_like.coe_injective $ set.preimage_prod_map_prod f g _ _ lemma ker_prod_map (f : M →ₗ[R] M₂) (g : M₃ →ₗ[R] M₄) : (linear_map.prod_map f g).ker = submodule.prod f.ker g.ker := begin dsimp only [ker], rw [←prod_map_comap_prod, submodule.prod_bot], end @[simp] lemma prod_map_id : (id : M →ₗ[R] M).prod_map (id : M₂ →ₗ[R] M₂) = id := linear_map.ext $ λ _, prod.mk.eta @[simp] lemma prod_map_one : (1 : M →ₗ[R] M).prod_map (1 : M₂ →ₗ[R] M₂) = 1 := linear_map.ext $ λ _, prod.mk.eta lemma prod_map_comp (f₁₂ : M →ₗ[R] M₂) (f₂₃ : M₂ →ₗ[R] M₃) (g₁₂ : M₄ →ₗ[R] M₅) (g₂₃ : M₅ →ₗ[R] M₆) : f₂₃.prod_map g₂₃ ∘ₗ f₁₂.prod_map g₁₂ = (f₂₃ ∘ₗ f₁₂).prod_map (g₂₃ ∘ₗ g₁₂) := rfl lemma prod_map_mul (f₁₂ : M →ₗ[R] M) (f₂₃ : M →ₗ[R] M) (g₁₂ : M₂ →ₗ[R] M₂) (g₂₃ : M₂ →ₗ[R] M₂) : f₂₃.prod_map g₂₃ * f₁₂.prod_map g₁₂ = (f₂₃ * f₁₂).prod_map (g₂₃ * g₁₂) := rfl lemma prod_map_add (f₁ : M →ₗ[R] M₃) (f₂ : M →ₗ[R] M₃) (g₁ : M₂ →ₗ[R] M₄) (g₂ : M₂ →ₗ[R] M₄) : (f₁ + f₂).prod_map (g₁ + g₂) = f₁.prod_map g₁ + f₂.prod_map g₂ := rfl @[simp] lemma prod_map_zero : (0 : M →ₗ[R] M₂).prod_map (0 : M₃ →ₗ[R] M₄) = 0 := rfl @[simp] lemma prod_map_smul [module S M₃] [module S M₄] [smul_comm_class R S M₃] [smul_comm_class R S M₄] (s : S) (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₄) : prod_map (s • f) (s • g) = s • prod_map f g := rfl variables (R M M₂ M₃ M₄) /-- `linear_map.prod_map` as a `linear_map` -/ @[simps] def prod_map_linear [module S M₃] [module S M₄] [smul_comm_class R S M₃] [smul_comm_class R S M₄] : ((M →ₗ[R] M₃) × (M₂ →ₗ[R] M₄)) →ₗ[S] ((M × M₂) →ₗ[R] (M₃ × M₄)) := { to_fun := λ f, prod_map f.1 f.2, map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl} /-- `linear_map.prod_map` as a `ring_hom` -/ @[simps] def prod_map_ring_hom : (M →ₗ[R] M) × (M₂ →ₗ[R] M₂) →+* ((M × M₂) →ₗ[R] (M × M₂)) := { to_fun := λ f, prod_map f.1 f.2, map_one' := prod_map_one, map_zero' := rfl, map_add' := λ _ _, rfl, map_mul' := λ _ _, rfl } variables {R M M₂ M₃ M₄} section map_mul variables {A : Type*} [non_unital_non_assoc_semiring A] [module R A] variables {B : Type*} [non_unital_non_assoc_semiring B] [module R B] lemma inl_map_mul (a₁ a₂ : A) : linear_map.inl R A B (a₁ * a₂) = linear_map.inl R A B a₁ * linear_map.inl R A B a₂ := prod.ext rfl (by simp) lemma inr_map_mul (b₁ b₂ : B) : linear_map.inr R A B (b₁ * b₂) = linear_map.inr R A B b₁ * linear_map.inr R A B b₂ := prod.ext (by simp) rfl end map_mul end linear_map end prod namespace linear_map variables (R M M₂) variables [comm_semiring R] variables [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R M₂] /-- `linear_map.prod_map` as an `algebra_hom` -/ @[simps] def prod_map_alg_hom : (module.End R M) × (module.End R M₂) →ₐ[R] module.End R (M × M₂) := { commutes' := λ _, rfl, ..prod_map_ring_hom R M M₂ } end linear_map namespace linear_map open submodule variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] [module R M] [module R M₂] [module R M₃] [module R M₄] lemma range_coprod (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) : (f.coprod g).range = f.range ⊔ g.range := submodule.ext $ λ x, by simp [mem_sup] lemma is_compl_range_inl_inr : is_compl (inl R M M₂).range (inr R M M₂).range := begin split, { rintros ⟨_, _⟩ ⟨⟨x, hx⟩, ⟨y, hy⟩⟩, simp only [prod.ext_iff, inl_apply, inr_apply, mem_bot] at hx hy ⊢, exact ⟨hy.1.symm, hx.2.symm⟩ }, { rintros ⟨x, y⟩ -, simp only [mem_sup, mem_range, exists_prop], refine ⟨(x, 0), ⟨x, rfl⟩, (0, y), ⟨y, rfl⟩, _⟩, simp } end lemma sup_range_inl_inr : (inl R M M₂).range ⊔ (inr R M M₂).range = ⊤ := is_compl_range_inl_inr.sup_eq_top lemma disjoint_inl_inr : disjoint (inl R M M₂).range (inr R M M₂).range := by simp [disjoint_def, @eq_comm M 0, @eq_comm M₂ 0] {contextual := tt}; intros; refl theorem map_coprod_prod (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (p : submodule R M) (q : submodule R M₂) : map (coprod f g) (p.prod q) = map f p ⊔ map g q := begin refine le_antisymm _ (sup_le (map_le_iff_le_comap.2 _) (map_le_iff_le_comap.2 _)), { rw set_like.le_def, rintro _ ⟨x, ⟨h₁, h₂⟩, rfl⟩, exact mem_sup.2 ⟨_, ⟨_, h₁, rfl⟩, _, ⟨_, h₂, rfl⟩, rfl⟩ }, { exact λ x hx, ⟨(x, 0), by simp [hx]⟩ }, { exact λ x hx, ⟨(0, x), by simp [hx]⟩ } end theorem comap_prod_prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) (p : submodule R M₂) (q : submodule R M₃) : comap (prod f g) (p.prod q) = comap f p ⊓ comap g q := submodule.ext $ λ x, iff.rfl theorem prod_eq_inf_comap (p : submodule R M) (q : submodule R M₂) : p.prod q = p.comap (linear_map.fst R M M₂) ⊓ q.comap (linear_map.snd R M M₂) := submodule.ext $ λ x, iff.rfl theorem prod_eq_sup_map (p : submodule R M) (q : submodule R M₂) : p.prod q = p.map (linear_map.inl R M M₂) ⊔ q.map (linear_map.inr R M M₂) := by rw [← map_coprod_prod, coprod_inl_inr, map_id] lemma span_inl_union_inr {s : set M} {t : set M₂} : span R (inl R M M₂ '' s ∪ inr R M M₂ '' t) = (span R s).prod (span R t) := by rw [span_union, prod_eq_sup_map, ← span_image, ← span_image] @[simp] lemma ker_prod (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : ker (prod f g) = ker f ⊓ ker g := by rw [ker, ← prod_bot, comap_prod_prod]; refl lemma range_prod_le (f : M →ₗ[R] M₂) (g : M →ₗ[R] M₃) : range (prod f g) ≤ (range f).prod (range g) := begin simp only [set_like.le_def, prod_apply, mem_range, set_like.mem_coe, mem_prod, exists_imp_distrib], rintro _ x rfl, exact ⟨⟨x, rfl⟩, ⟨x, rfl⟩⟩ end lemma ker_prod_ker_le_ker_coprod {M₂ : Type*} [add_comm_group M₂] [module R M₂] {M₃ : Type*} [add_comm_group M₃] [module R M₃] (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) : (ker f).prod (ker g) ≤ ker (f.coprod g) := by { rintros ⟨y, z⟩, simp {contextual := tt} } lemma ker_coprod_of_disjoint_range {M₂ : Type*} [add_comm_group M₂] [module R M₂] {M₃ : Type*} [add_comm_group M₃] [module R M₃] (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (hd : disjoint f.range g.range) : ker (f.coprod g) = (ker f).prod (ker g) := begin apply le_antisymm _ (ker_prod_ker_le_ker_coprod f g), rintros ⟨y, z⟩ h, simp only [mem_ker, mem_prod, coprod_apply] at h ⊢, have : f y ∈ f.range ⊓ g.range, { simp only [true_and, mem_range, mem_inf, exists_apply_eq_apply], use -z, rwa [eq_comm, map_neg, ← sub_eq_zero, sub_neg_eq_add] }, rw [hd.eq_bot, mem_bot] at this, rw [this] at h, simpa [this] using h, end end linear_map namespace submodule open linear_map variables [semiring R] variables [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R M₂] lemma sup_eq_range (p q : submodule R M) : p ⊔ q = (p.subtype.coprod q.subtype).range := submodule.ext $ λ x, by simp [submodule.mem_sup, set_like.exists] variables (p : submodule R M) (q : submodule R M₂) @[simp] theorem map_inl : p.map (inl R M M₂) = prod p ⊥ := by { ext ⟨x, y⟩, simp only [and.left_comm, eq_comm, mem_map, prod.mk.inj_iff, inl_apply, mem_bot, exists_eq_left', mem_prod] } @[simp] theorem map_inr : q.map (inr R M M₂) = prod ⊥ q := by ext ⟨x, y⟩; simp [and.left_comm, eq_comm] @[simp] theorem comap_fst : p.comap (fst R M M₂) = prod p ⊤ := by ext ⟨x, y⟩; simp @[simp] theorem comap_snd : q.comap (snd R M M₂) = prod ⊤ q := by ext ⟨x, y⟩; simp @[simp] theorem prod_comap_inl : (prod p q).comap (inl R M M₂) = p := by ext; simp @[simp] theorem prod_comap_inr : (prod p q).comap (inr R M M₂) = q := by ext; simp @[simp] theorem prod_map_fst : (prod p q).map (fst R M M₂) = p := by ext x; simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ q)] @[simp] theorem prod_map_snd : (prod p q).map (snd R M M₂) = q := by ext x; simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ p)] @[simp] theorem ker_inl : (inl R M M₂).ker = ⊥ := by rw [ker, ← prod_bot, prod_comap_inl] @[simp] theorem ker_inr : (inr R M M₂).ker = ⊥ := by rw [ker, ← prod_bot, prod_comap_inr] @[simp] theorem range_fst : (fst R M M₂).range = ⊤ := by rw [range_eq_map, ← prod_top, prod_map_fst] @[simp] theorem range_snd : (snd R M M₂).range = ⊤ := by rw [range_eq_map, ← prod_top, prod_map_snd] variables (R M M₂) /-- `M` as a submodule of `M × N`. -/ def fst : submodule R (M × M₂) := (⊥ : submodule R M₂).comap (linear_map.snd R M M₂) /-- `M` as a submodule of `M × N` is isomorphic to `M`. -/ @[simps] def fst_equiv : submodule.fst R M M₂ ≃ₗ[R] M := { to_fun := λ x, x.1.1, inv_fun := λ m, ⟨⟨m, 0⟩, by tidy⟩, map_add' := by simp, map_smul' := by simp, left_inv := by tidy, right_inv := by tidy, } lemma fst_map_fst : (submodule.fst R M M₂).map (linear_map.fst R M M₂) = ⊤ := by tidy lemma fst_map_snd : (submodule.fst R M M₂).map (linear_map.snd R M M₂) = ⊥ := by { tidy, exact 0, } /-- `N` as a submodule of `M × N`. -/ def snd : submodule R (M × M₂) := (⊥ : submodule R M).comap (linear_map.fst R M M₂) /-- `N` as a submodule of `M × N` is isomorphic to `N`. -/ @[simps] def snd_equiv : submodule.snd R M M₂ ≃ₗ[R] M₂ := { to_fun := λ x, x.1.2, inv_fun := λ n, ⟨⟨0, n⟩, by tidy⟩, map_add' := by simp, map_smul' := by simp, left_inv := by tidy, right_inv := by tidy, } lemma snd_map_fst : (submodule.snd R M M₂).map (linear_map.fst R M M₂) = ⊥ := by { tidy, exact 0, } lemma snd_map_snd : (submodule.snd R M M₂).map (linear_map.snd R M M₂) = ⊤ := by tidy lemma fst_sup_snd : submodule.fst R M M₂ ⊔ submodule.snd R M M₂ = ⊤ := begin rw eq_top_iff, rintro ⟨m, n⟩ -, rw [show (m, n) = (m, 0) + (0, n), by simp], apply submodule.add_mem (submodule.fst R M M₂ ⊔ submodule.snd R M M₂), { exact submodule.mem_sup_left (submodule.mem_comap.mpr (by simp)), }, { exact submodule.mem_sup_right (submodule.mem_comap.mpr (by simp)), }, end lemma fst_inf_snd : submodule.fst R M M₂ ⊓ submodule.snd R M M₂ = ⊥ := by tidy lemma le_prod_iff {p₁ : submodule R M} {p₂ : submodule R M₂} {q : submodule R (M × M₂)} : q ≤ p₁.prod p₂ ↔ map (linear_map.fst R M M₂) q ≤ p₁ ∧ map (linear_map.snd R M M₂) q ≤ p₂ := begin split, { intros h, split, { rintros x ⟨⟨y1,y2⟩, ⟨hy1,rfl⟩⟩, exact (h hy1).1 }, { rintros x ⟨⟨y1,y2⟩, ⟨hy1,rfl⟩⟩, exact (h hy1).2 }, }, { rintros ⟨hH, hK⟩ ⟨x1, x2⟩ h, exact ⟨hH ⟨_ , h, rfl⟩, hK ⟨ _, h, rfl⟩⟩, } end lemma prod_le_iff {p₁ : submodule R M} {p₂ : submodule R M₂} {q : submodule R (M × M₂)} : p₁.prod p₂ ≤ q ↔ map (linear_map.inl R M M₂) p₁ ≤ q ∧ map (linear_map.inr R M M₂) p₂ ≤ q := begin split, { intros h, split, { rintros _ ⟨x, hx, rfl⟩, apply h, exact ⟨hx, zero_mem p₂⟩, }, { rintros _ ⟨x, hx, rfl⟩, apply h, exact ⟨zero_mem p₁, hx⟩, }, }, { rintros ⟨hH, hK⟩ ⟨x1, x2⟩ ⟨h1, h2⟩, have h1' : (linear_map.inl R _ _) x1 ∈ q, { apply hH, simpa using h1, }, have h2' : (linear_map.inr R _ _) x2 ∈ q, { apply hK, simpa using h2, }, simpa using add_mem h1' h2', } end lemma prod_eq_bot_iff {p₁ : submodule R M} {p₂ : submodule R M₂} : p₁.prod p₂ = ⊥ ↔ p₁ = ⊥ ∧ p₂ = ⊥ := by simp only [eq_bot_iff, prod_le_iff, (gc_map_comap _).le_iff_le, comap_bot, ker_inl, ker_inr] lemma prod_eq_top_iff {p₁ : submodule R M} {p₂ : submodule R M₂} : p₁.prod p₂ = ⊤ ↔ p₁ = ⊤ ∧ p₂ = ⊤ := by simp only [eq_top_iff, le_prod_iff, ← (gc_map_comap _).le_iff_le, map_top, range_fst, range_snd] end submodule namespace linear_equiv /-- Product of modules is commutative up to linear isomorphism. -/ @[simps apply] def prod_comm (R M N : Type*) [semiring R] [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N] : (M × N) ≃ₗ[R] (N × M) := { to_fun := prod.swap, map_smul' := λ r ⟨m, n⟩, rfl, ..add_equiv.prod_comm } section variables [semiring R] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables {module_M : module R M} {module_M₂ : module R M₂} variables {module_M₃ : module R M₃} {module_M₄ : module R M₄} variables (e₁ : M ≃ₗ[R] M₂) (e₂ : M₃ ≃ₗ[R] M₄) /-- Product of linear equivalences; the maps come from `equiv.prod_congr`. -/ protected def prod : (M × M₃) ≃ₗ[R] (M₂ × M₄) := { map_smul' := λ c x, prod.ext (e₁.map_smulₛₗ c _) (e₂.map_smulₛₗ c _), .. e₁.to_add_equiv.prod_congr e₂.to_add_equiv } lemma prod_symm : (e₁.prod e₂).symm = e₁.symm.prod e₂.symm := rfl @[simp] lemma prod_apply (p) : e₁.prod e₂ p = (e₁ p.1, e₂ p.2) := rfl @[simp, norm_cast] lemma coe_prod : (e₁.prod e₂ : (M × M₃) →ₗ[R] (M₂ × M₄)) = (e₁ : M →ₗ[R] M₂).prod_map (e₂ : M₃ →ₗ[R] M₄) := rfl end section variables [semiring R] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_group M₄] variables {module_M : module R M} {module_M₂ : module R M₂} variables {module_M₃ : module R M₃} {module_M₄ : module R M₄} variables (e₁ : M ≃ₗ[R] M₂) (e₂ : M₃ ≃ₗ[R] M₄) /-- Equivalence given by a block lower diagonal matrix. `e₁` and `e₂` are diagonal square blocks, and `f` is a rectangular block below the diagonal. -/ protected def skew_prod (f : M →ₗ[R] M₄) : (M × M₃) ≃ₗ[R] M₂ × M₄ := { inv_fun := λ p : M₂ × M₄, (e₁.symm p.1, e₂.symm (p.2 - f (e₁.symm p.1))), left_inv := λ p, by simp, right_inv := λ p, by simp, .. ((e₁ : M →ₗ[R] M₂).comp (linear_map.fst R M M₃)).prod ((e₂ : M₃ →ₗ[R] M₄).comp (linear_map.snd R M M₃) + f.comp (linear_map.fst R M M₃)) } @[simp] lemma skew_prod_apply (f : M →ₗ[R] M₄) (x) : e₁.skew_prod e₂ f x = (e₁ x.1, e₂ x.2 + f x.1) := rfl @[simp] lemma skew_prod_symm_apply (f : M →ₗ[R] M₄) (x) : (e₁.skew_prod e₂ f).symm x = (e₁.symm x.1, e₂.symm (x.2 - f (e₁.symm x.1))) := rfl end end linear_equiv namespace linear_map open submodule variables [ring R] variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module R M] [module R M₂] [module R M₃] /-- If the union of the kernels `ker f` and `ker g` spans the domain, then the range of `prod f g` is equal to the product of `range f` and `range g`. -/ lemma range_prod_eq {f : M →ₗ[R] M₂} {g : M →ₗ[R] M₃} (h : ker f ⊔ ker g = ⊤) : range (prod f g) = (range f).prod (range g) := begin refine le_antisymm (f.range_prod_le g) _, simp only [set_like.le_def, prod_apply, mem_range, set_like.mem_coe, mem_prod, exists_imp_distrib, and_imp, prod.forall, pi.prod], rintros _ _ x rfl y rfl, simp only [prod.mk.inj_iff, ← sub_mem_ker_iff], have : y - x ∈ ker f ⊔ ker g, { simp only [h, mem_top] }, rcases mem_sup.1 this with ⟨x', hx', y', hy', H⟩, refine ⟨x' + x, _, _⟩, { rwa add_sub_cancel }, { rwa [← eq_sub_iff_add_eq.1 H, add_sub_add_right_eq_sub, ← neg_mem_iff, neg_sub, add_sub_cancel'] } end end linear_map namespace linear_map /-! ## Tunnels and tailings Some preliminary work for establishing the strong rank condition for noetherian rings. Given a morphism `f : M × N →ₗ[R] M` which is `i : injective f`, we can find an infinite decreasing `tunnel f i n` of copies of `M` inside `M`, and sitting beside these, an infinite sequence of copies of `N`. We picturesquely name these as `tailing f i n` for each individual copy of `N`, and `tailings f i n` for the supremum of the first `n+1` copies: they are the pieces left behind, sitting inside the tunnel. By construction, each `tailing f i (n+1)` is disjoint from `tailings f i n`; later, when we assume `M` is noetherian, this implies that `N` must be trivial, and establishes the strong rank condition for any left-noetherian ring. -/ section tunnel -- (This doesn't work over a semiring: we need to use that `submodule R M` is a modular lattice, -- which requires cancellation.) variables [ring R] variables {N : Type*} [add_comm_group M] [module R M] [add_comm_group N] [module R N] open function /-- An auxiliary construction for `tunnel`. The composition of `f`, followed by the isomorphism back to `K`, followed by the inclusion of this submodule back into `M`. -/ def tunnel_aux (f : M × N →ₗ[R] M) (Kφ : Σ K : submodule R M, K ≃ₗ[R] M) : M × N →ₗ[R] M := (Kφ.1.subtype.comp Kφ.2.symm.to_linear_map).comp f lemma tunnel_aux_injective (f : M × N →ₗ[R] M) (i : injective f) (Kφ : Σ K : submodule R M, K ≃ₗ[R] M) : injective (tunnel_aux f Kφ) := (subtype.val_injective.comp Kφ.2.symm.injective).comp i noncomputable theory /-- Auxiliary definition for `tunnel`. -/ -- Even though we have `noncomputable theory`, -- we get an error without another `noncomputable` here. noncomputable def tunnel' (f : M × N →ₗ[R] M) (i : injective f) : ℕ → Σ (K : submodule R M), K ≃ₗ[R] M | 0 := ⟨⊤, linear_equiv.of_top ⊤ rfl⟩ | (n+1) := ⟨(submodule.fst R M N).map (tunnel_aux f (tunnel' n)), ((submodule.fst R M N).equiv_map_of_injective _ (tunnel_aux_injective f i (tunnel' n))).symm.trans (submodule.fst_equiv R M N)⟩ /-- Give an injective map `f : M × N →ₗ[R] M` we can find a nested sequence of submodules all isomorphic to `M`. -/ def tunnel (f : M × N →ₗ[R] M) (i : injective f) : ℕ →o (submodule R M)ᵒᵈ := ⟨λ n, order_dual.to_dual (tunnel' f i n).1, monotone_nat_of_le_succ (λ n, begin dsimp [tunnel', tunnel_aux], rw [submodule.map_comp, submodule.map_comp], apply submodule.map_subtype_le, end)⟩ /-- Give an injective map `f : M × N →ₗ[R] M` we can find a sequence of submodules all isomorphic to `N`. -/ def tailing (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : submodule R M := (submodule.snd R M N).map (tunnel_aux f (tunnel' f i n)) /-- Each `tailing f i n` is a copy of `N`. -/ def tailing_linear_equiv (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : tailing f i n ≃ₗ[R] N := ((submodule.snd R M N).equiv_map_of_injective _ (tunnel_aux_injective f i (tunnel' f i n))).symm.trans (submodule.snd_equiv R M N) lemma tailing_le_tunnel (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : tailing f i n ≤ (tunnel f i n).of_dual := begin dsimp [tailing, tunnel_aux], rw [submodule.map_comp, submodule.map_comp], apply submodule.map_subtype_le, end lemma tailing_disjoint_tunnel_succ (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : disjoint (tailing f i n) (tunnel f i (n+1)).of_dual := begin rw disjoint_iff, dsimp [tailing, tunnel, tunnel'], rw [submodule.map_inf_eq_map_inf_comap, submodule.comap_map_eq_of_injective (tunnel_aux_injective _ i _), inf_comm, submodule.fst_inf_snd, submodule.map_bot], end lemma tailing_sup_tunnel_succ_le_tunnel (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : tailing f i n ⊔ (tunnel f i (n+1)).of_dual ≤ (tunnel f i n).of_dual := begin dsimp [tailing, tunnel, tunnel', tunnel_aux], rw [←submodule.map_sup, sup_comm, submodule.fst_sup_snd, submodule.map_comp, submodule.map_comp], apply submodule.map_subtype_le, end /-- The supremum of all the copies of `N` found inside the tunnel. -/ def tailings (f : M × N →ₗ[R] M) (i : injective f) : ℕ → submodule R M := partial_sups (tailing f i) @[simp] lemma tailings_zero (f : M × N →ₗ[R] M) (i : injective f) : tailings f i 0 = tailing f i 0 := by simp [tailings] @[simp] lemma tailings_succ (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : tailings f i (n+1) = tailings f i n ⊔ tailing f i (n+1) := by simp [tailings] lemma tailings_disjoint_tunnel (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : disjoint (tailings f i n) (tunnel f i (n+1)).of_dual := begin induction n with n ih, { simp only [tailings_zero], apply tailing_disjoint_tunnel_succ, }, { simp only [tailings_succ], refine disjoint.disjoint_sup_left_of_disjoint_sup_right _ _, apply tailing_disjoint_tunnel_succ, apply disjoint.mono_right _ ih, apply tailing_sup_tunnel_succ_le_tunnel, }, end lemma tailings_disjoint_tailing (f : M × N →ₗ[R] M) (i : injective f) (n : ℕ) : disjoint (tailings f i n) (tailing f i (n+1)) := disjoint.mono_right (tailing_le_tunnel f i _) (tailings_disjoint_tunnel f i _) end tunnel section graph variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_group M₃] [add_comm_group M₄] [module R M] [module R M₂] [module R M₃] [module R M₄] (f : M →ₗ[R] M₂) (g : M₃ →ₗ[R] M₄) /-- Graph of a linear map. -/ def graph : submodule R (M × M₂) := { carrier := {p | p.2 = f p.1}, add_mem' := λ a b (ha : _ = _) (hb : _ = _), begin change _ + _ = f (_ + _), rw [map_add, ha, hb] end, zero_mem' := eq.symm (map_zero f), smul_mem' := λ c x (hx : _ = _), begin change _ • _ = f (_ • _), rw [map_smul, hx] end } @[simp] lemma mem_graph_iff (x : M × M₂) : x ∈ f.graph ↔ x.2 = f x.1 := iff.rfl lemma graph_eq_ker_coprod : g.graph = ((-g).coprod linear_map.id).ker := begin ext x, change _ = _ ↔ -(g x.1) + x.2 = _, rw [add_comm, add_neg_eq_zero] end lemma graph_eq_range_prod : f.graph = (linear_map.id.prod f).range := begin ext x, exact ⟨λ hx, ⟨x.1, prod.ext rfl hx.symm⟩, λ ⟨u, hu⟩, hu ▸ rfl⟩ end end graph end linear_map