/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov -/ import group_theory.quotient_group import linear_algebra.span /-! # Quotients by submodules * If `p` is a submodule of `M`, `M ⧸ p` is the quotient of `M` with respect to `p`: that is, elements of `M` are identified if their difference is in `p`. This is itself a module. -/ -- For most of this file we work over a noncommutative ring section ring namespace submodule variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M] variables (p p' : submodule R M) open linear_map quotient_add_group /-- The equivalence relation associated to a submodule `p`, defined by `x ≈ y` iff `-x + y ∈ p`. Note this is equivalent to `y - x ∈ p`, but defined this way to be be defeq to the `add_subgroup` version, where commutativity can't be assumed. -/ def quotient_rel : setoid M := quotient_add_group.left_rel p.to_add_subgroup lemma quotient_rel_r_def {x y : M} : @setoid.r _ (p.quotient_rel) x y ↔ x - y ∈ p := iff.trans (by { rw [left_rel_apply, sub_eq_add_neg, neg_add, neg_neg], refl }) neg_mem_iff /-- The quotient of a module `M` by a submodule `p ⊆ M`. -/ instance has_quotient : has_quotient M (submodule R M) := ⟨λ p, quotient (quotient_rel p)⟩ namespace quotient /-- Map associating to an element of `M` the corresponding element of `M/p`, when `p` is a submodule of `M`. -/ def mk {p : submodule R M} : M → M ⧸ p := quotient.mk' @[simp] theorem mk_eq_mk {p : submodule R M} (x : M) : (@_root_.quotient.mk _ (quotient_rel p) x) = mk x := rfl @[simp] theorem mk'_eq_mk {p : submodule R M} (x : M) : (quotient.mk' x : M ⧸ p) = mk x := rfl @[simp] theorem quot_mk_eq_mk {p : submodule R M} (x : M) : (quot.mk _ x : M ⧸ p) = mk x := rfl protected theorem eq' {x y : M} : (mk x : M ⧸ p) = mk y ↔ -x + y ∈ p := quotient_add_group.eq protected theorem eq {x y : M} : (mk x : M ⧸ p) = mk y ↔ x - y ∈ p := (p^.quotient.eq').trans (left_rel_apply.symm.trans p.quotient_rel_r_def) instance : has_zero (M ⧸ p) := ⟨mk 0⟩ instance : inhabited (M ⧸ p) := ⟨0⟩ @[simp] theorem mk_zero : mk 0 = (0 : M ⧸ p) := rfl @[simp] theorem mk_eq_zero : (mk x : M ⧸ p) = 0 ↔ x ∈ p := by simpa using (quotient.eq p : mk x = 0 ↔ _) instance add_comm_group : add_comm_group (M ⧸ p) := quotient_add_group.add_comm_group p.to_add_subgroup @[simp] theorem mk_add : (mk (x + y) : M ⧸ p) = mk x + mk y := rfl @[simp] theorem mk_neg : (mk (-x) : M ⧸ p) = -mk x := rfl @[simp] theorem mk_sub : (mk (x - y) : M ⧸ p) = mk x - mk y := rfl section has_smul variables {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] (P : submodule R M) instance has_smul' : has_smul S (M ⧸ P) := ⟨λ a, quotient.map' ((•) a) $ λ x y h, left_rel_apply.mpr $ by simpa [smul_sub] using P.smul_mem (a • 1 : R) (left_rel_apply.mp h)⟩ /-- Shortcut to help the elaborator in the common case. -/ instance has_smul : has_smul R (M ⧸ P) := quotient.has_smul' P @[simp] theorem mk_smul (r : S) (x : M) : (mk (r • x) : M ⧸ p) = r • mk x := rfl instance smul_comm_class (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M] [smul_comm_class S T M] : smul_comm_class S T (M ⧸ P) := { smul_comm := λ x y, quotient.ind' $ by exact λ z, congr_arg mk (smul_comm _ _ _) } instance is_scalar_tower (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M] [has_smul S T] [is_scalar_tower S T M] : is_scalar_tower S T (M ⧸ P) := { smul_assoc := λ x y, quotient.ind' $ by exact λ z, congr_arg mk (smul_assoc _ _ _) } instance is_central_scalar [has_smul Sᵐᵒᵖ R] [has_smul Sᵐᵒᵖ M] [is_scalar_tower Sᵐᵒᵖ R M] [is_central_scalar S M] : is_central_scalar S (M ⧸ P) := { op_smul_eq_smul := λ x, quotient.ind' $ by exact λ z, congr_arg mk $ op_smul_eq_smul _ _ } end has_smul section module variables {S : Type*} instance mul_action' [monoid S] [has_smul S R] [mul_action S M] [is_scalar_tower S R M] (P : submodule R M) : mul_action S (M ⧸ P) := function.surjective.mul_action mk (surjective_quot_mk _) P^.quotient.mk_smul instance mul_action (P : submodule R M) : mul_action R (M ⧸ P) := quotient.mul_action' P instance distrib_mul_action' [monoid S] [has_smul S R] [distrib_mul_action S M] [is_scalar_tower S R M] (P : submodule R M) : distrib_mul_action S (M ⧸ P) := function.surjective.distrib_mul_action ⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul instance distrib_mul_action (P : submodule R M) : distrib_mul_action R (M ⧸ P) := quotient.distrib_mul_action' P instance module' [semiring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M) : module S (M ⧸ P) := function.surjective.module _ ⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul instance module (P : submodule R M) : module R (M ⧸ P) := quotient.module' P variables (S) /-- The quotient of `P` as an `S`-submodule is the same as the quotient of `P` as an `R`-submodule, where `P : submodule R M`. -/ def restrict_scalars_equiv [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M) : (M ⧸ P.restrict_scalars S) ≃ₗ[S] M ⧸ P := { map_add' := λ x y, quotient.induction_on₂' x y (λ x' y', rfl), map_smul' := λ c x, quotient.induction_on' x (λ x', rfl), ..quotient.congr_right $ λ _ _, iff.rfl } @[simp] lemma restrict_scalars_equiv_mk [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M) (x : M) : restrict_scalars_equiv S P (mk x) = mk x := rfl @[simp] lemma restrict_scalars_equiv_symm_mk [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M) (x : M) : (restrict_scalars_equiv S P).symm (mk x) = mk x := rfl end module lemma mk_surjective : function.surjective (@mk _ _ _ _ _ p) := by { rintros ⟨x⟩, exact ⟨x, rfl⟩ } lemma nontrivial_of_lt_top (h : p < ⊤) : nontrivial (M ⧸ p) := begin obtain ⟨x, _, not_mem_s⟩ := set_like.exists_of_lt h, refine ⟨⟨mk x, 0, _⟩⟩, simpa using not_mem_s end end quotient section variables {M₂ : Type*} [add_comm_group M₂] [module R M₂] lemma quot_hom_ext ⦃f g : M ⧸ p →ₗ[R] M₂⦄ (h : ∀ x, f (quotient.mk x) = g (quotient.mk x)) : f = g := linear_map.ext $ λ x, quotient.induction_on' x h /-- The map from a module `M` to the quotient of `M` by a submodule `p` as a linear map. -/ def mkq : M →ₗ[R] M ⧸ p := { to_fun := quotient.mk, map_add' := by simp, map_smul' := by simp } @[simp] theorem mkq_apply (x : M) : p.mkq x = quotient.mk x := rfl lemma mkq_surjective (A : submodule R M) : function.surjective A.mkq := by rintro ⟨x⟩; exact ⟨x, rfl⟩ end variables {R₂ M₂ : Type*} [ring R₂] [add_comm_group M₂] [module R₂ M₂] {τ₁₂ : R →+* R₂} /-- Two `linear_map`s from a quotient module are equal if their compositions with `submodule.mkq` are equal. See note [partially-applied ext lemmas]. -/ @[ext] lemma linear_map_qext ⦃f g : M ⧸ p →ₛₗ[τ₁₂] M₂⦄ (h : f.comp p.mkq = g.comp p.mkq) : f = g := linear_map.ext $ λ x, quotient.induction_on' x $ (linear_map.congr_fun h : _) /-- The map from the quotient of `M` by a submodule `p` to `M₂` induced by a linear map `f : M → M₂` vanishing on `p`, as a linear map. -/ def liftq (f : M →ₛₗ[τ₁₂] M₂) (h : p ≤ f.ker) : M ⧸ p →ₛₗ[τ₁₂] M₂ := { map_smul' := by rintro a ⟨x⟩; exact f.map_smulₛₗ a x, ..quotient_add_group.lift p.to_add_subgroup f.to_add_monoid_hom h } @[simp] theorem liftq_apply (f : M →ₛₗ[τ₁₂] M₂) {h} (x : M) : p.liftq f h (quotient.mk x) = f x := rfl @[simp] theorem liftq_mkq (f : M →ₛₗ[τ₁₂] M₂) (h) : (p.liftq f h).comp p.mkq = f := by ext; refl /--Special case of `liftq` when `p` is the span of `x`. In this case, the condition on `f` simply becomes vanishing at `x`.-/ def liftq_span_singleton (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) : (M ⧸ R ∙ x) →ₛₗ[τ₁₂] M₂ := (R ∙ x).liftq f $ by rw [span_singleton_le_iff_mem, linear_map.mem_ker, h] @[simp] lemma liftq_span_singleton_apply (x : M) (f : M →ₛₗ[τ₁₂] M₂) (h : f x = 0) (y : M) : liftq_span_singleton x f h (quotient.mk y) = f y := rfl @[simp] theorem range_mkq : p.mkq.range = ⊤ := eq_top_iff'.2 $ by rintro ⟨x⟩; exact ⟨x, rfl⟩ @[simp] theorem ker_mkq : p.mkq.ker = p := by ext; simp lemma le_comap_mkq (p' : submodule R (M ⧸ p)) : p ≤ comap p.mkq p' := by simpa using (comap_mono bot_le : p.mkq.ker ≤ comap p.mkq p') @[simp] theorem mkq_map_self : map p.mkq p = ⊥ := by rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkq]; exact le_rfl @[simp] theorem comap_map_mkq : comap p.mkq (map p.mkq p') = p ⊔ p' := by simp [comap_map_eq, sup_comm] @[simp] theorem map_mkq_eq_top : map p.mkq p' = ⊤ ↔ p ⊔ p' = ⊤ := by simp only [map_eq_top_iff p.range_mkq, sup_comm, ker_mkq] variables (q : submodule R₂ M₂) /-- The map from the quotient of `M` by submodule `p` to the quotient of `M₂` by submodule `q` along `f : M → M₂` is linear. -/ def mapq (f : M →ₛₗ[τ₁₂] M₂) (h : p ≤ comap f q) : (M ⧸ p) →ₛₗ[τ₁₂] (M₂ ⧸ q) := p.liftq (q.mkq.comp f) $ by simpa [ker_comp] using h @[simp] theorem mapq_apply (f : M →ₛₗ[τ₁₂] M₂) {h} (x : M) : mapq p q f h (quotient.mk x) = quotient.mk (f x) := rfl theorem mapq_mkq (f : M →ₛₗ[τ₁₂] M₂) {h} : (mapq p q f h).comp p.mkq = q.mkq.comp f := by ext x; refl @[simp] lemma mapq_zero (h : p ≤ q.comap (0 : M →ₛₗ[τ₁₂] M₂) := by simp) : p.mapq q (0 : M →ₛₗ[τ₁₂] M₂) h = 0 := by { ext, simp, } /-- Given submodules `p ⊆ M`, `p₂ ⊆ M₂`, `p₃ ⊆ M₃` and maps `f : M → M₂`, `g : M₂ → M₃` inducing `mapq f : M ⧸ p → M₂ ⧸ p₂` and `mapq g : M₂ ⧸ p₂ → M₃ ⧸ p₃` then `mapq (g ∘ f) = (mapq g) ∘ (mapq f)`. -/ lemma mapq_comp {R₃ M₃ : Type*} [ring R₃] [add_comm_group M₃] [module R₃ M₃] (p₂ : submodule R₂ M₂) (p₃ : submodule R₃ M₃) {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : p ≤ p₂.comap f) (hg : p₂ ≤ p₃.comap g) (h := (hf.trans (comap_mono hg))) : p.mapq p₃ (g.comp f) h = (p₂.mapq p₃ g hg).comp (p.mapq p₂ f hf) := by { ext, simp, } @[simp] lemma mapq_id (h : p ≤ p.comap linear_map.id := by simp) : p.mapq p linear_map.id h = linear_map.id := by { ext, simp, } lemma mapq_pow {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ) (h' : p ≤ p.comap (f^k) := p.le_comap_pow_of_le_comap h k) : p.mapq p (f^k) h' = (p.mapq p f h)^k := begin induction k with k ih, { simp [linear_map.one_eq_id], }, { simp only [linear_map.iterate_succ, ← ih], apply p.mapq_comp, }, end theorem comap_liftq (f : M →ₛₗ[τ₁₂] M₂) (h) : q.comap (p.liftq f h) = (q.comap f).map (mkq p) := le_antisymm (by rintro ⟨x⟩ hx; exact ⟨_, hx, rfl⟩) (by rw [map_le_iff_le_comap, ← comap_comp, liftq_mkq]; exact le_rfl) theorem map_liftq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h) (q : submodule R (M ⧸ p)) : q.map (p.liftq f h) = (q.comap p.mkq).map f := le_antisymm (by rintro _ ⟨⟨x⟩, hxq, rfl⟩; exact ⟨x, hxq, rfl⟩) (by rintro _ ⟨x, hxq, rfl⟩; exact ⟨quotient.mk x, hxq, rfl⟩) theorem ker_liftq (f : M →ₛₗ[τ₁₂] M₂) (h) : ker (p.liftq f h) = (ker f).map (mkq p) := comap_liftq _ _ _ _ theorem range_liftq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (h) : range (p.liftq f h) = range f := by simpa only [range_eq_map] using map_liftq _ _ _ _ theorem ker_liftq_eq_bot (f : M →ₛₗ[τ₁₂] M₂) (h) (h' : ker f ≤ p) : ker (p.liftq f h) = ⊥ := by rw [ker_liftq, le_antisymm h h', mkq_map_self] /-- The correspondence theorem for modules: there is an order isomorphism between submodules of the quotient of `M` by `p`, and submodules of `M` larger than `p`. -/ def comap_mkq.rel_iso : submodule R (M ⧸ p) ≃o {p' : submodule R M // p ≤ p'} := { to_fun := λ p', ⟨comap p.mkq p', le_comap_mkq p _⟩, inv_fun := λ q, map p.mkq q, left_inv := λ p', map_comap_eq_self $ by simp, right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simpa [comap_map_mkq p], map_rel_iff' := λ p₁ p₂, comap_le_comap_iff $ range_mkq _ } /-- The ordering on submodules of the quotient of `M` by `p` embeds into the ordering on submodules of `M`. -/ def comap_mkq.order_embedding : submodule R (M ⧸ p) ↪o submodule R M := (rel_iso.to_rel_embedding $ comap_mkq.rel_iso p).trans (subtype.rel_embedding _ _) @[simp] lemma comap_mkq_embedding_eq (p' : submodule R (M ⧸ p)) : comap_mkq.order_embedding p p' = comap p.mkq p' := rfl lemma span_preimage_eq [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {s : set M₂} (h₀ : s.nonempty) (h₁ : s ⊆ range f) : span R (f ⁻¹' s) = (span R₂ s).comap f := begin suffices : (span R₂ s).comap f ≤ span R (f ⁻¹' s), { exact le_antisymm (span_preimage_le f s) this, }, have hk : ker f ≤ span R (f ⁻¹' s), { let y := classical.some h₀, have hy : y ∈ s, { exact classical.some_spec h₀, }, rw ker_le_iff, use [y, h₁ hy], rw ← set.singleton_subset_iff at hy, exact set.subset.trans subset_span (span_mono (set.preimage_mono hy)), }, rw ← left_eq_sup at hk, rw f.range_coe at h₁, rw [hk, ←linear_map.map_le_map_iff, map_span, map_comap_eq, set.image_preimage_eq_of_subset h₁], exact inf_le_right, end end submodule open submodule namespace linear_map section ring variables {R M R₂ M₂ R₃ M₃ : Type*} variables [ring R] [ring R₂] [ring R₃] variables [add_comm_monoid M] [add_comm_group M₂] [add_comm_monoid M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] [ring_hom_surjective τ₁₂] lemma range_mkq_comp (f : M →ₛₗ[τ₁₂] M₂) : f.range.mkq.comp f = 0 := linear_map.ext $ λ x, by simp lemma ker_le_range_iff {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} : g.ker ≤ f.range ↔ f.range.mkq.comp g.ker.subtype = 0 := by rw [←range_le_ker_iff, submodule.ker_mkq, submodule.range_subtype] /-- An epimorphism is surjective. -/ lemma range_eq_top_of_cancel {f : M →ₛₗ[τ₁₂] M₂} (h : ∀ (u v : M₂ →ₗ[R₂] M₂ ⧸ f.range), u.comp f = v.comp f → u = v) : f.range = ⊤ := begin have h₁ : (0 : M₂ →ₗ[R₂] M₂ ⧸ f.range).comp f = 0 := zero_comp _, rw [←submodule.ker_mkq f.range, ←h 0 f.range.mkq (eq.trans h₁ (range_mkq_comp _).symm)], exact ker_zero end end ring end linear_map open linear_map namespace submodule variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M] variables (p p' : submodule R M) /-- If `p = ⊥`, then `M / p ≃ₗ[R] M`. -/ def quot_equiv_of_eq_bot (hp : p = ⊥) : (M ⧸ p) ≃ₗ[R] M := linear_equiv.of_linear (p.liftq id $ hp.symm ▸ bot_le) p.mkq (liftq_mkq _ _ _) $ p.quot_hom_ext $ λ x, rfl @[simp] lemma quot_equiv_of_eq_bot_apply_mk (hp : p = ⊥) (x : M) : p.quot_equiv_of_eq_bot hp (quotient.mk x) = x := rfl @[simp] lemma quot_equiv_of_eq_bot_symm_apply (hp : p = ⊥) (x : M) : (p.quot_equiv_of_eq_bot hp).symm x = quotient.mk x := rfl @[simp] lemma coe_quot_equiv_of_eq_bot_symm (hp : p = ⊥) : ((p.quot_equiv_of_eq_bot hp).symm : M →ₗ[R] M ⧸ p) = p.mkq := rfl /-- Quotienting by equal submodules gives linearly equivalent quotients. -/ def quot_equiv_of_eq (h : p = p') : (M ⧸ p) ≃ₗ[R] M ⧸ p' := { map_add' := by { rintros ⟨x⟩ ⟨y⟩, refl }, map_smul' := by { rintros x ⟨y⟩, refl }, ..@quotient.congr _ _ (quotient_rel p) (quotient_rel p') (equiv.refl _) $ λ a b, by { subst h, refl } } @[simp] lemma quot_equiv_of_eq_mk (h : p = p') (x : M) : submodule.quot_equiv_of_eq p p' h (submodule.quotient.mk x) = submodule.quotient.mk x := rfl end submodule end ring section comm_ring variables {R M M₂ : Type*} {r : R} {x y : M} [comm_ring R] [add_comm_group M] [module R M] [add_comm_group M₂] [module R M₂] (p : submodule R M) (q : submodule R M₂) namespace submodule /-- Given modules `M`, `M₂` over a commutative ring, together with submodules `p ⊆ M`, `q ⊆ M₂`, the natural map $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \} \to Hom(M/p, M₂/q)$ is linear. -/ def mapq_linear : compatible_maps p q →ₗ[R] (M ⧸ p) →ₗ[R] (M₂ ⧸ q) := { to_fun := λ f, mapq _ _ f.val f.property, map_add' := λ x y, by { ext, refl, }, map_smul' := λ c f, by { ext, refl, } } end submodule end comm_ring