/- Copyright (c) 2021 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers -/ import linear_algebra.basic /-! # Rays in modules This file defines rays in modules. ## Main definitions * `same_ray`: two vectors belong to the same ray if they are proportional with a nonnegative coefficient. * `module.ray` is a type for the equivalence class of nonzero vectors in a module with some common positive multiple. -/ noncomputable theory open_locale big_operators section ordered_comm_semiring variables (R : Type*) [ordered_comm_semiring R] variables {M : Type*} [add_comm_monoid M] [module R M] variables {N : Type*} [add_comm_monoid N] [module R N] variables (ι : Type*) [decidable_eq ι] /-- Two vectors are in the same ray if either one of them is zero or some positive multiples of them are equal (in the typical case over a field, this means one of them is a nonnegative multiple of the other). -/ def same_ray (v₁ v₂ : M) : Prop := v₁ = 0 ∨ v₂ = 0 ∨ ∃ (r₁ r₂ : R), 0 < r₁ ∧ 0 < r₂ ∧ r₁ • v₁ = r₂ • v₂ variables {R} namespace same_ray variables {x y z : M} @[simp] lemma zero_left (y : M) : same_ray R 0 y := or.inl rfl @[simp] lemma zero_right (x : M) : same_ray R x 0 := or.inr $ or.inl rfl @[nontriviality] lemma of_subsingleton [subsingleton M] (x y : M) : same_ray R x y := by { rw [subsingleton.elim x 0], exact zero_left _ } @[nontriviality] lemma of_subsingleton' [subsingleton R] (x y : M) : same_ray R x y := by { haveI := module.subsingleton R M, exact of_subsingleton x y } /-- `same_ray` is reflexive. -/ @[refl] lemma refl (x : M) : same_ray R x x := begin nontriviality R, exact or.inr (or.inr $ ⟨1, 1, zero_lt_one, zero_lt_one, rfl⟩) end protected lemma rfl : same_ray R x x := refl _ /-- `same_ray` is symmetric. -/ @[symm] lemma symm (h : same_ray R x y) : same_ray R y x := (or.left_comm.1 h).imp_right $ or.imp_right $ λ ⟨r₁, r₂, h₁, h₂, h⟩, ⟨r₂, r₁, h₂, h₁, h.symm⟩ /-- If `x` and `y` are nonzero vectors on the same ray, then there exist positive numbers `r₁ r₂` such that `r₁ • x = r₂ • y`. -/ lemma exists_pos (h : same_ray R x y) (hx : x ≠ 0) (hy : y ≠ 0) : ∃ r₁ r₂ : R, 0 < r₁ ∧ 0 < r₂ ∧ r₁ • x = r₂ • y := (h.resolve_left hx).resolve_left hy lemma _root_.same_ray_comm : same_ray R x y ↔ same_ray R y x := ⟨same_ray.symm, same_ray.symm⟩ /-- `same_ray` is transitive unless the vector in the middle is zero and both other vectors are nonzero. -/ lemma trans (hxy : same_ray R x y) (hyz : same_ray R y z) (hy : y = 0 → x = 0 ∨ z = 0) : same_ray R x z := begin rcases eq_or_ne x 0 with rfl|hx, { exact zero_left z }, rcases eq_or_ne z 0 with rfl|hz, { exact zero_right x }, rcases eq_or_ne y 0 with rfl|hy, { exact (hy rfl).elim (λ h, (hx h).elim) (λ h, (hz h).elim) }, rcases hxy.exists_pos hx hy with ⟨r₁, r₂, hr₁, hr₂, h₁⟩, rcases hyz.exists_pos hy hz with ⟨r₃, r₄, hr₃, hr₄, h₂⟩, refine or.inr (or.inr $ ⟨r₃ * r₁, r₂ * r₄, mul_pos hr₃ hr₁, mul_pos hr₂ hr₄, _⟩), rw [mul_smul, mul_smul, h₁, ← h₂, smul_comm] end /-- A vector is in the same ray as a nonnegative multiple of itself. -/ lemma _root_.same_ray_nonneg_smul_right (v : M) {r : R} (h : 0 ≤ r) : same_ray R v (r • v) := or.inr $ h.eq_or_lt.imp (λ h, h ▸ zero_smul R v) $ λ h, ⟨r, 1, h, by { nontriviality R, exact zero_lt_one }, (one_smul _ _).symm⟩ /-- A vector is in the same ray as a positive multiple of itself. -/ lemma _root_.same_ray_pos_smul_right (v : M) {r : R} (h : 0 < r) : same_ray R v (r • v) := same_ray_nonneg_smul_right v h.le /-- A vector is in the same ray as a nonnegative multiple of one it is in the same ray as. -/ lemma nonneg_smul_right {r : R} (h : same_ray R x y) (hr : 0 ≤ r) : same_ray R x (r • y) := h.trans (same_ray_nonneg_smul_right y hr) $ λ hy, or.inr $ by rw [hy, smul_zero] /-- A vector is in the same ray as a positive multiple of one it is in the same ray as. -/ lemma pos_smul_right {r : R} (h : same_ray R x y) (hr : 0 < r) : same_ray R x (r • y) := h.nonneg_smul_right hr.le /-- A nonnegative multiple of a vector is in the same ray as that vector. -/ lemma _root_.same_ray_nonneg_smul_left (v : M) {r : R} (h : 0 ≤ r) : same_ray R (r • v) v := (same_ray_nonneg_smul_right v h).symm /-- A positive multiple of a vector is in the same ray as that vector. -/ lemma _root_.same_ray_pos_smul_left (v : M) {r : R} (h : 0 < r) : same_ray R (r • v) v := same_ray_nonneg_smul_left v h.le /-- A nonnegative multiple of a vector is in the same ray as one it is in the same ray as. -/ lemma nonneg_smul_left {r : R} (h : same_ray R x y) (hr : 0 ≤ r) : same_ray R (r • x) y := (h.symm.nonneg_smul_right hr).symm /-- A positive multiple of a vector is in the same ray as one it is in the same ray as. -/ lemma pos_smul_left {r : R} (h : same_ray R x y) (hr : 0 < r) : same_ray R (r • x) y := h.nonneg_smul_left hr.le /-- If two vectors are on the same ray then they remain so after applying a linear map. -/ lemma map (f : M →ₗ[R] N) (h : same_ray R x y) : same_ray R (f x) (f y) := h.imp (λ hx, by rw [hx, map_zero]) $ or.imp (λ hy, by rw [hy, map_zero]) $ λ ⟨r₁, r₂, hr₁, hr₂, h⟩, ⟨r₁, r₂, hr₁, hr₂, by rw [←f.map_smul, ←f.map_smul, h]⟩ /-- The images of two vectors under a linear equivalence are on the same ray if and only if the original vectors are on the same ray. -/ @[simp] lemma _root_.same_ray_map_iff (e : M ≃ₗ[R] N) : same_ray R (e x) (e y) ↔ same_ray R x y := ⟨λ h, by simpa using same_ray.map e.symm.to_linear_map h, same_ray.map e.to_linear_map⟩ /-- If two vectors are on the same ray then both scaled by the same action are also on the same ray. -/ lemma smul {S : Type*} [monoid S] [distrib_mul_action S M] [smul_comm_class R S M] (h : same_ray R x y) (s : S) : same_ray R (s • x) (s • y) := h.map (s • (linear_map.id : M →ₗ[R] M)) /-- If `x` and `y` are on the same ray as `z`, then so is `x + y`. -/ lemma add_left (hx : same_ray R x z) (hy : same_ray R y z) : same_ray R (x + y) z := begin rcases eq_or_ne x 0 with rfl|hx₀, { rwa zero_add }, rcases eq_or_ne y 0 with rfl|hy₀, { rwa add_zero }, rcases eq_or_ne z 0 with rfl|hz₀, { apply zero_right }, rcases hx.exists_pos hx₀ hz₀ with ⟨rx, rz₁, hrx, hrz₁, Hx⟩, rcases hy.exists_pos hy₀ hz₀ with ⟨ry, rz₂, hry, hrz₂, Hy⟩, refine or.inr (or.inr ⟨rx * ry, ry * rz₁ + rx * rz₂, mul_pos hrx hry, _, _⟩), { apply_rules [add_pos, mul_pos] }, { simp only [mul_smul, smul_add, add_smul, ← Hx, ← Hy], rw smul_comm } end /-- If `y` and `z` are on the same ray as `x`, then so is `y + z`. -/ lemma add_right (hy : same_ray R x y) (hz : same_ray R x z) : same_ray R x (y + z) := (hy.symm.add_left hz.symm).symm end same_ray /-- Nonzero vectors, as used to define rays. This type depends on an unused argument `R` so that `ray_vector.setoid` can be an instance. -/ @[nolint unused_arguments has_inhabited_instance] def ray_vector (R M : Type*) [has_zero M] := {v : M // v ≠ 0} instance ray_vector.has_coe {R M : Type*} [has_zero M] : has_coe (ray_vector R M) M := coe_subtype instance {R M : Type*} [has_zero M] [nontrivial M] : nonempty (ray_vector R M) := let ⟨x, hx⟩ := exists_ne (0 : M) in ⟨⟨x, hx⟩⟩ variables (R M) /-- The setoid of the `same_ray` relation for the subtype of nonzero vectors. -/ instance : setoid (ray_vector R M) := { r := λ x y, same_ray R (x : M) y, iseqv := ⟨λ x, same_ray.refl _, λ x y h, h.symm, λ x y z hxy hyz, hxy.trans hyz $ λ hy, (y.2 hy).elim⟩ } /-- A ray (equivalence class of nonzero vectors with common positive multiples) in a module. -/ @[nolint has_inhabited_instance] def module.ray := quotient (ray_vector.setoid R M) variables {R M} /-- Equivalence of nonzero vectors, in terms of same_ray. -/ lemma equiv_iff_same_ray {v₁ v₂ : ray_vector R M} : v₁ ≈ v₂ ↔ same_ray R (v₁ : M) v₂ := iff.rfl variables (R) /-- The ray given by a nonzero vector. -/ protected def ray_of_ne_zero (v : M) (h : v ≠ 0) : module.ray R M := ⟦⟨v, h⟩⟧ /-- An induction principle for `module.ray`, used as `induction x using module.ray.ind`. -/ lemma module.ray.ind {C : module.ray R M → Prop} (h : ∀ v (hv : v ≠ 0), C (ray_of_ne_zero R v hv)) (x : module.ray R M) : C x := quotient.ind (subtype.rec $ by exact h) x variable {R} instance [nontrivial M] : nonempty (module.ray R M) := nonempty.map quotient.mk infer_instance /-- The rays given by two nonzero vectors are equal if and only if those vectors satisfy `same_ray`. -/ lemma ray_eq_iff {v₁ v₂ : M} (hv₁ : v₁ ≠ 0) (hv₂ : v₂ ≠ 0) : ray_of_ne_zero R _ hv₁ = ray_of_ne_zero R _ hv₂ ↔ same_ray R v₁ v₂ := quotient.eq /-- The ray given by a positive multiple of a nonzero vector. -/ @[simp] lemma ray_pos_smul {v : M} (h : v ≠ 0) {r : R} (hr : 0 < r) (hrv : r • v ≠ 0) : ray_of_ne_zero R (r • v) hrv = ray_of_ne_zero R v h := (ray_eq_iff _ _).2 $ same_ray_pos_smul_left v hr /-- An equivalence between modules implies an equivalence between ray vectors. -/ def ray_vector.map_linear_equiv (e : M ≃ₗ[R] N) : ray_vector R M ≃ ray_vector R N := equiv.subtype_equiv e.to_equiv $ λ _, e.map_ne_zero_iff.symm /-- An equivalence between modules implies an equivalence between rays. -/ def module.ray.map (e : M ≃ₗ[R] N) : module.ray R M ≃ module.ray R N := quotient.congr (ray_vector.map_linear_equiv e) $ λ ⟨a, ha⟩ ⟨b, hb⟩, (same_ray_map_iff _).symm @[simp] lemma module.ray.map_apply (e : M ≃ₗ[R] N) (v : M) (hv : v ≠ 0) : module.ray.map e (ray_of_ne_zero _ v hv) = ray_of_ne_zero _ (e v) (e.map_ne_zero_iff.2 hv) := rfl @[simp] lemma module.ray.map_refl : (module.ray.map $ linear_equiv.refl R M) = equiv.refl _ := equiv.ext $ module.ray.ind R $ λ _ _, rfl @[simp] lemma module.ray.map_symm (e : M ≃ₗ[R] N) : (module.ray.map e).symm = module.ray.map e.symm := rfl section action variables {G : Type*} [group G] [distrib_mul_action G M] /-- Any invertible action preserves the non-zeroness of ray vectors. This is primarily of interest when `G = Rˣ` -/ instance {R : Type*} : mul_action G (ray_vector R M) := { smul := λ r, (subtype.map ((•) r) $ λ a, (smul_ne_zero_iff_ne _).2), mul_smul := λ a b m, subtype.ext $ mul_smul a b _, one_smul := λ m, subtype.ext $ one_smul _ _ } variables [smul_comm_class R G M] /-- Any invertible action preserves the non-zeroness of rays. This is primarily of interest when `G = Rˣ` -/ instance : mul_action G (module.ray R M) := { smul := λ r, quotient.map ((•) r) (λ a b h, h.smul _), mul_smul := λ a b, quotient.ind $ by exact(λ m, congr_arg quotient.mk $ mul_smul a b _), one_smul := quotient.ind $ by exact (λ m, congr_arg quotient.mk $ one_smul _ _), } /-- The action via `linear_equiv.apply_distrib_mul_action` corresponds to `module.ray.map`. -/ @[simp] lemma module.ray.linear_equiv_smul_eq_map (e : M ≃ₗ[R] M) (v : module.ray R M) : e • v = module.ray.map e v := rfl @[simp] lemma smul_ray_of_ne_zero (g : G) (v : M) (hv) : g • ray_of_ne_zero R v hv = ray_of_ne_zero R (g • v) ((smul_ne_zero_iff_ne _).2 hv) := rfl end action namespace module.ray /-- Scaling by a positive unit is a no-op. -/ lemma units_smul_of_pos (u : Rˣ) (hu : 0 < (u : R)) (v : module.ray R M) : u • v = v := begin induction v using module.ray.ind, rw [smul_ray_of_ne_zero, ray_eq_iff], exact same_ray_pos_smul_left _ hu end /-- An arbitrary `ray_vector` giving a ray. -/ def some_ray_vector (x : module.ray R M) : ray_vector R M := quotient.out x /-- The ray of `some_ray_vector`. -/ @[simp] lemma some_ray_vector_ray (x : module.ray R M) : (⟦x.some_ray_vector⟧ : module.ray R M) = x := quotient.out_eq _ /-- An arbitrary nonzero vector giving a ray. -/ def some_vector (x : module.ray R M) : M := x.some_ray_vector /-- `some_vector` is nonzero. -/ @[simp] lemma some_vector_ne_zero (x : module.ray R M) : x.some_vector ≠ 0 := x.some_ray_vector.property /-- The ray of `some_vector`. -/ @[simp] lemma some_vector_ray (x : module.ray R M) : ray_of_ne_zero R _ x.some_vector_ne_zero = x := (congr_arg _ (subtype.coe_eta _ _) : _).trans x.out_eq end module.ray end ordered_comm_semiring section ordered_comm_ring variables {R : Type*} [ordered_comm_ring R] variables {M N : Type*} [add_comm_group M] [add_comm_group N] [module R M] [module R N] {x y : M} /-- `same_ray.neg` as an `iff`. -/ @[simp] lemma same_ray_neg_iff : same_ray R (-x) (-y) ↔ same_ray R x y := by simp only [same_ray, neg_eq_zero, smul_neg, neg_inj] alias same_ray_neg_iff ↔ same_ray.of_neg same_ray.neg lemma same_ray_neg_swap : same_ray R (-x) y ↔ same_ray R x (-y) := by rw [← same_ray_neg_iff, neg_neg] lemma eq_zero_of_same_ray_neg_smul_right [no_zero_smul_divisors R M] {r : R} (hr : r < 0) (h : same_ray R x (r • x)) : x = 0 := begin rcases h with rfl|h₀|⟨r₁, r₂, hr₁, hr₂, h⟩, { refl }, { simpa [hr.ne] using h₀ }, { rw [← sub_eq_zero, smul_smul, ← sub_smul, smul_eq_zero] at h, refine h.resolve_left (ne_of_gt $ sub_pos.2 _), exact (mul_neg_of_pos_of_neg hr₂ hr).trans hr₁ } end /-- If a vector is in the same ray as its negation, that vector is zero. -/ lemma eq_zero_of_same_ray_self_neg [no_zero_smul_divisors R M] (h : same_ray R x (-x)) : x = 0 := begin nontriviality M, haveI : nontrivial R := module.nontrivial R M, refine eq_zero_of_same_ray_neg_smul_right (neg_lt_zero.2 (@one_pos R _ _)) _, rwa [neg_one_smul] end namespace ray_vector /-- Negating a nonzero vector. -/ instance {R : Type*} : has_neg (ray_vector R M) := ⟨λ v, ⟨-v, neg_ne_zero.2 v.prop⟩⟩ /-- Negating a nonzero vector commutes with coercion to the underlying module. -/ @[simp, norm_cast] lemma coe_neg {R : Type*} (v : ray_vector R M) : ↑(-v) = -(v : M) := rfl /-- Negating a nonzero vector twice produces the original vector. -/ instance {R : Type*} : has_involutive_neg (ray_vector R M) := { neg := has_neg.neg, neg_neg := λ v, by rw [subtype.ext_iff, coe_neg, coe_neg, neg_neg] } /-- If two nonzero vectors are equivalent, so are their negations. -/ @[simp] lemma equiv_neg_iff {v₁ v₂ : ray_vector R M} : -v₁ ≈ -v₂ ↔ v₁ ≈ v₂ := same_ray_neg_iff end ray_vector variables (R) /-- Negating a ray. -/ instance : has_neg (module.ray R M) := ⟨quotient.map (λ v, -v) (λ v₁ v₂, ray_vector.equiv_neg_iff.2)⟩ /-- The ray given by the negation of a nonzero vector. -/ @[simp] lemma neg_ray_of_ne_zero (v : M) (h : v ≠ 0) : -(ray_of_ne_zero R _ h) = ray_of_ne_zero R (-v) (neg_ne_zero.2 h) := rfl namespace module.ray variables {R} /-- Negating a ray twice produces the original ray. -/ instance : has_involutive_neg (module.ray R M) := { neg := has_neg.neg, neg_neg := λ x, quotient.ind (λ a, congr_arg quotient.mk $ neg_neg _) x } variables {R M} /-- A ray does not equal its own negation. -/ lemma ne_neg_self [no_zero_smul_divisors R M] (x : module.ray R M) : x ≠ -x := begin induction x using module.ray.ind with x hx, rw [neg_ray_of_ne_zero, ne.def, ray_eq_iff], exact mt eq_zero_of_same_ray_self_neg hx end lemma neg_units_smul (u : Rˣ) (v : module.ray R M) : (-u) • v = - (u • v) := begin induction v using module.ray.ind, simp only [smul_ray_of_ne_zero, units.smul_def, units.coe_neg, neg_smul, neg_ray_of_ne_zero] end /-- Scaling by a negative unit is negation. -/ lemma units_smul_of_neg (u : Rˣ) (hu : (u : R) < 0) (v : module.ray R M) : u • v = -v := begin rw [← neg_inj, neg_neg, ← neg_units_smul, units_smul_of_pos], rwa [units.coe_neg, right.neg_pos_iff] end end module.ray end ordered_comm_ring section linear_ordered_comm_ring variables {R : Type*} [linear_ordered_comm_ring R] variables {M : Type*} [add_comm_group M] [module R M] /-- `same_ray` follows from membership of `mul_action.orbit` for the `units.pos_subgroup`. -/ lemma same_ray_of_mem_orbit {v₁ v₂ : M} (h : v₁ ∈ mul_action.orbit (units.pos_subgroup R) v₂) : same_ray R v₁ v₂ := begin rcases h with ⟨⟨r, hr : 0 < (r : R)⟩, (rfl : r • v₂ = v₁)⟩, exact same_ray_pos_smul_left _ hr end /-- Scaling by an inverse unit is the same as scaling by itself. -/ @[simp] lemma units_inv_smul (u : Rˣ) (v : module.ray R M) : u⁻¹ • v = u • v := calc u⁻¹ • v = (u * u) • u⁻¹ • v : eq.symm $ (u⁻¹ • v).units_smul_of_pos _ $ mul_self_pos.2 u.ne_zero ... = u • v : by rw [mul_smul, smul_inv_smul] section variables [no_zero_smul_divisors R M] @[simp] lemma same_ray_smul_right_iff {v : M} {r : R} : same_ray R v (r • v) ↔ 0 ≤ r ∨ v = 0 := ⟨λ hrv, or_iff_not_imp_left.2 $ λ hr, eq_zero_of_same_ray_neg_smul_right (not_le.1 hr) hrv, or_imp_distrib.2 ⟨same_ray_nonneg_smul_right v, λ h, h.symm ▸ same_ray.zero_left _⟩⟩ /-- A nonzero vector is in the same ray as a multiple of itself if and only if that multiple is positive. -/ lemma same_ray_smul_right_iff_of_ne {v : M} (hv : v ≠ 0) {r : R} (hr : r ≠ 0) : same_ray R v (r • v) ↔ 0 < r := by simp only [same_ray_smul_right_iff, hv, or_false, hr.symm.le_iff_lt] @[simp] lemma same_ray_smul_left_iff {v : M} {r : R} : same_ray R (r • v) v ↔ 0 ≤ r ∨ v = 0 := same_ray_comm.trans same_ray_smul_right_iff /-- A multiple of a nonzero vector is in the same ray as that vector if and only if that multiple is positive. -/ lemma same_ray_smul_left_iff_of_ne {v : M} (hv : v ≠ 0) {r : R} (hr : r ≠ 0) : same_ray R (r • v) v ↔ 0 < r := same_ray_comm.trans (same_ray_smul_right_iff_of_ne hv hr) @[simp] lemma same_ray_neg_smul_right_iff {v : M} {r : R} : same_ray R (-v) (r • v) ↔ r ≤ 0 ∨ v = 0 := by rw [← same_ray_neg_iff, neg_neg, ← neg_smul, same_ray_smul_right_iff, neg_nonneg] lemma same_ray_neg_smul_right_iff_of_ne {v : M} {r : R} (hv : v ≠ 0) (hr : r ≠ 0) : same_ray R (-v) (r • v) ↔ r < 0 := by simp only [same_ray_neg_smul_right_iff, hv, or_false, hr.le_iff_lt] @[simp] lemma same_ray_neg_smul_left_iff {v : M} {r : R} : same_ray R (r • v) (-v) ↔ r ≤ 0 ∨ v = 0 := same_ray_comm.trans same_ray_neg_smul_right_iff lemma same_ray_neg_smul_left_iff_of_ne {v : M} {r : R} (hv : v ≠ 0) (hr : r ≠ 0) : same_ray R (r • v) (-v) ↔ r < 0 := same_ray_comm.trans $ same_ray_neg_smul_right_iff_of_ne hv hr @[simp] lemma units_smul_eq_self_iff {u : Rˣ} {v : module.ray R M} : u • v = v ↔ (0 : R) < u := begin induction v using module.ray.ind with v hv, simp only [smul_ray_of_ne_zero, ray_eq_iff, units.smul_def, same_ray_smul_left_iff_of_ne hv u.ne_zero] end @[simp] lemma units_smul_eq_neg_iff {u : Rˣ} {v : module.ray R M} : u • v = -v ↔ ↑u < (0 : R) := by rw [← neg_inj, neg_neg, ← module.ray.neg_units_smul, units_smul_eq_self_iff, units.coe_neg, neg_pos] end end linear_ordered_comm_ring namespace same_ray variables {R : Type*} [linear_ordered_field R] variables {M : Type*} [add_comm_group M] [module R M] {x y v₁ v₂ : M} lemma exists_pos_left (h : same_ray R x y) (hx : x ≠ 0) (hy : y ≠ 0) : ∃ r : R, 0 < r ∧ r • x = y := let ⟨r₁, r₂, hr₁, hr₂, h⟩ := h.exists_pos hx hy in ⟨r₂⁻¹ * r₁, mul_pos (inv_pos.2 hr₂) hr₁, by rw [mul_smul, h, inv_smul_smul₀ hr₂.ne']⟩ lemma exists_pos_right (h : same_ray R x y) (hx : x ≠ 0) (hy : y ≠ 0) : ∃ r : R, 0 < r ∧ x = r • y := (h.symm.exists_pos_left hy hx).imp $ λ _, and.imp_right eq.symm /-- If a vector `v₂` is on the same ray as a nonzero vector `v₁`, then it is equal to `c • v₁` for some nonnegative `c`. -/ lemma exists_nonneg_left (h : same_ray R x y) (hx : x ≠ 0) : ∃ r : R, 0 ≤ r ∧ r • x = y := begin obtain rfl | hy := eq_or_ne y 0, { exact ⟨0, le_rfl, zero_smul _ _⟩ }, { exact (h.exists_pos_left hx hy).imp (λ _, and.imp_left le_of_lt) } end /-- If a vector `v₁` is on the same ray as a nonzero vector `v₂`, then it is equal to `c • v₂` for some nonnegative `c`. -/ lemma exists_nonneg_right (h : same_ray R x y) (hy : y ≠ 0) : ∃ r : R, 0 ≤ r ∧ x = r • y := (h.symm.exists_nonneg_left hy).imp $ λ _, and.imp_right eq.symm /-- If vectors `v₁` and `v₂` are on the same ray, then for some nonnegative `a b`, `a + b = 1`, we have `v₁ = a • (v₁ + v₂)` and `v₂ = b • (v₁ + v₂)`. -/ lemma exists_eq_smul_add (h : same_ray R v₁ v₂) : ∃ a b : R, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • (v₁ + v₂) ∧ v₂ = b • (v₁ + v₂) := begin rcases h with rfl|rfl|⟨r₁, r₂, h₁, h₂, H⟩, { use [0, 1], simp }, { use [1, 0], simp }, { have h₁₂ : 0 < r₁ + r₂, from add_pos h₁ h₂, refine ⟨r₂ / (r₁ + r₂), r₁ / (r₁ + r₂), div_nonneg h₂.le h₁₂.le, div_nonneg h₁.le h₁₂.le, _, _, _⟩, { rw [← add_div, add_comm, div_self h₁₂.ne'] }, { rw [div_eq_inv_mul, mul_smul, smul_add, ← H, ← add_smul, add_comm r₂, inv_smul_smul₀ h₁₂.ne'] }, { rw [div_eq_inv_mul, mul_smul, smul_add, H, ← add_smul, add_comm r₂, inv_smul_smul₀ h₁₂.ne'] } } end /-- If vectors `v₁` and `v₂` are on the same ray, then they are nonnegative multiples of the same vector. Actually, this vector can be assumed to be `v₁ + v₂`, see `same_ray.exists_eq_smul_add`. -/ lemma exists_eq_smul (h : same_ray R v₁ v₂) : ∃ (u : M) (a b : R), 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ v₁ = a • u ∧ v₂ = b • u := ⟨v₁ + v₂, h.exists_eq_smul_add⟩ end same_ray