/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import linear_algebra.matrix.adjugate import linear_algebra.matrix.to_lin /-! # The Special Linear group $SL(n, R)$ This file defines the elements of the Special Linear group `special_linear_group n R`, consisting of all square `R`-matrices with determinant `1` on the fintype `n` by `n`. In addition, we define the group structure on `special_linear_group n R` and the embedding into the general linear group `general_linear_group R (n → R)`. ## Main definitions * `matrix.special_linear_group` is the type of matrices with determinant 1 * `matrix.special_linear_group.group` gives the group structure (under multiplication) * `matrix.special_linear_group.to_GL` is the embedding `SLₙ(R) → GLₙ(R)` ## Notation For `m : ℕ`, we introduce the notation `SL(m,R)` for the special linear group on the fintype `n = fin m`, in the locale `matrix_groups`. ## Implementation notes The inverse operation in the `special_linear_group` is defined to be the adjugate matrix, so that `special_linear_group n R` has a group structure for all `comm_ring R`. We define the elements of `special_linear_group` to be matrices, since we need to compute their determinant. This is in contrast with `general_linear_group R M`, which consists of invertible `R`-linear maps on `M`. We provide `matrix.special_linear_group.has_coe_to_fun` for convenience, but do not state any lemmas about it, and use `matrix.special_linear_group.coe_fn_eq_coe` to eliminate it `⇑` in favor of a regular `↑` coercion. ## References * https://en.wikipedia.org/wiki/Special_linear_group ## Tags matrix group, group, matrix inverse -/ namespace matrix universes u v open_locale matrix open linear_map section variables (n : Type u) [decidable_eq n] [fintype n] (R : Type v) [comm_ring R] /-- `special_linear_group n R` is the group of `n` by `n` `R`-matrices with determinant equal to 1. -/ def special_linear_group := { A : matrix n n R // A.det = 1 } end localized "notation `SL(` n `,` R `)`:= matrix.special_linear_group (fin n) R" in matrix_groups namespace special_linear_group variables {n : Type u} [decidable_eq n] [fintype n] {R : Type v} [comm_ring R] instance has_coe_to_matrix : has_coe (special_linear_group n R) (matrix n n R) := ⟨λ A, A.val⟩ /- In this file, Lean often has a hard time working out the values of `n` and `R` for an expression like `det ↑A`. Rather than writing `(A : matrix n n R)` everywhere in this file which is annoyingly verbose, or `A.val` which is not the simp-normal form for subtypes, we create a local notation `↑ₘA`. This notation references the local `n` and `R` variables, so is not valid as a global notation. -/ local prefix `↑ₘ`:1024 := @coe _ (matrix n n R) _ lemma ext_iff (A B : special_linear_group n R) : A = B ↔ (∀ i j, ↑ₘA i j = ↑ₘB i j) := subtype.ext_iff.trans matrix.ext_iff.symm @[ext] lemma ext (A B : special_linear_group n R) : (∀ i j, ↑ₘA i j = ↑ₘB i j) → A = B := (special_linear_group.ext_iff A B).mpr instance has_inv : has_inv (special_linear_group n R) := ⟨λ A, ⟨adjugate A, by rw [det_adjugate, A.prop, one_pow]⟩⟩ instance has_mul : has_mul (special_linear_group n R) := ⟨λ A B, ⟨A.1 ⬝ B.1, by erw [det_mul, A.2, B.2, one_mul]⟩⟩ instance has_one : has_one (special_linear_group n R) := ⟨⟨1, det_one⟩⟩ instance : has_pow (special_linear_group n R) ℕ := { pow := λ x n, ⟨x ^ n, (det_pow _ _).trans $ x.prop.symm ▸ one_pow _⟩} instance : inhabited (special_linear_group n R) := ⟨1⟩ section coe_lemmas variables (A B : special_linear_group n R) @[simp] lemma coe_mk (A : matrix n n R) (h : det A = 1) : ↑(⟨A, h⟩ : special_linear_group n R) = A := rfl @[simp] lemma coe_inv : ↑ₘ(A⁻¹) = adjugate A := rfl @[simp] lemma coe_mul : ↑ₘ(A * B) = ↑ₘA ⬝ ↑ₘB := rfl @[simp] lemma coe_one : ↑ₘ(1 : special_linear_group n R) = (1 : matrix n n R) := rfl @[simp] lemma det_coe : det ↑ₘA = 1 := A.2 @[simp] lemma coe_pow (m : ℕ) : ↑ₘ(A ^ m) = ↑ₘA ^ m := rfl lemma det_ne_zero [nontrivial R] (g : special_linear_group n R) : det ↑ₘg ≠ 0 := by { rw g.det_coe, norm_num } lemma row_ne_zero [nontrivial R] (g : special_linear_group n R) (i : n): ↑ₘg i ≠ 0 := λ h, g.det_ne_zero $ det_eq_zero_of_row_eq_zero i $ by simp [h] end coe_lemmas instance : monoid (special_linear_group n R) := function.injective.monoid coe subtype.coe_injective coe_one coe_mul coe_pow instance : group (special_linear_group n R) := { mul_left_inv := λ A, by { ext1, simp [adjugate_mul] }, ..special_linear_group.monoid, ..special_linear_group.has_inv } /-- A version of `matrix.to_lin' A` that produces linear equivalences. -/ def to_lin' : special_linear_group n R →* (n → R) ≃ₗ[R] (n → R) := { to_fun := λ A, linear_equiv.of_linear (matrix.to_lin' ↑ₘA) (matrix.to_lin' ↑ₘ(A⁻¹)) (by rw [←to_lin'_mul, ←coe_mul, mul_right_inv, coe_one, to_lin'_one]) (by rw [←to_lin'_mul, ←coe_mul, mul_left_inv, coe_one, to_lin'_one]), map_one' := linear_equiv.to_linear_map_injective matrix.to_lin'_one, map_mul' := λ A B, linear_equiv.to_linear_map_injective $ matrix.to_lin'_mul A B } lemma to_lin'_apply (A : special_linear_group n R) (v : n → R) : special_linear_group.to_lin' A v = matrix.to_lin' ↑ₘA v := rfl lemma to_lin'_to_linear_map (A : special_linear_group n R) : ↑(special_linear_group.to_lin' A) = matrix.to_lin' ↑ₘA := rfl lemma to_lin'_symm_apply (A : special_linear_group n R) (v : n → R) : A.to_lin'.symm v = matrix.to_lin' ↑ₘ(A⁻¹) v := rfl lemma to_lin'_symm_to_linear_map (A : special_linear_group n R) : ↑(A.to_lin'.symm) = matrix.to_lin' ↑ₘ(A⁻¹) := rfl lemma to_lin'_injective : function.injective ⇑(to_lin' : special_linear_group n R →* (n → R) ≃ₗ[R] (n → R)) := λ A B h, subtype.coe_injective $ matrix.to_lin'.injective $ linear_equiv.to_linear_map_injective.eq_iff.mpr h /-- `to_GL` is the map from the special linear group to the general linear group -/ def to_GL : special_linear_group n R →* general_linear_group R (n → R) := (general_linear_group.general_linear_equiv _ _).symm.to_monoid_hom.comp to_lin' lemma coe_to_GL (A : special_linear_group n R) : ↑A.to_GL = A.to_lin'.to_linear_map := rfl variables {S : Type*} [comm_ring S] /-- A ring homomorphism from `R` to `S` induces a group homomorphism from `special_linear_group n R` to `special_linear_group n S`. -/ @[simps] def map (f : R →+* S) : special_linear_group n R →* special_linear_group n S := { to_fun := λ g, ⟨f.map_matrix ↑g, by { rw ← f.map_det, simp [g.2] }⟩, map_one' := subtype.ext $ f.map_matrix.map_one, map_mul' := λ x y, subtype.ext $ f.map_matrix.map_mul x y } section cast /-- Coercion of SL `n` `ℤ` to SL `n` `R` for a commutative ring `R`. -/ instance : has_coe (special_linear_group n ℤ) (special_linear_group n R) := ⟨λ x, map (int.cast_ring_hom R) x⟩ @[simp] lemma coe_matrix_coe (g : special_linear_group n ℤ) : ↑(g : special_linear_group n R) = (↑g : matrix n n ℤ).map (int.cast_ring_hom R) := map_apply_coe (int.cast_ring_hom R) g end cast section has_neg variables [fact (even (fintype.card n))] /-- Formal operation of negation on special linear group on even cardinality `n` given by negating each element. -/ instance : has_neg (special_linear_group n R) := ⟨λ g, ⟨- g, by simpa [(fact.out $ even $ fintype.card n).neg_one_pow, g.det_coe] using det_smul ↑ₘg (-1)⟩⟩ @[simp] lemma coe_neg (g : special_linear_group n R) : ↑(- g) = - (g : matrix n n R) := rfl instance : has_distrib_neg (special_linear_group n R) := function.injective.has_distrib_neg _ subtype.coe_injective coe_neg coe_mul @[simp] lemma coe_int_neg (g : special_linear_group n ℤ) : ↑(-g) = (-↑g : special_linear_group n R) := subtype.ext $ (@ring_hom.map_matrix n _ _ _ _ _ _ (int.cast_ring_hom R)).map_neg ↑g end has_neg -- this section should be last to ensure we do not use it in lemmas section coe_fn_instance /-- This instance is here for convenience, but is not the simp-normal form. -/ instance : has_coe_to_fun (special_linear_group n R) (λ _, n → n → R) := { coe := λ A, A.val } @[simp] lemma coe_fn_eq_coe (s : special_linear_group n R) : ⇑s = ↑ₘs := rfl end coe_fn_instance end special_linear_group end matrix