/- Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import probability.variance import measure_theory.function.uniform_integrable /-! # Identically distributed random variables Two random variables defined on two (possibly different) probability spaces but taking value in the same space are *identically distributed* if their distributions (i.e., the image probability measures on the target space) coincide. We define this concept and establish its basic properties in this file. ## Main definitions and results * `ident_distrib f g μ ν` registers that the image of `μ` under `f` coincides with the image of `ν` under `g` (and that `f` and `g` are almost everywhere measurable, as otherwise the image measures don't make sense). The measures can be kept implicit as in `ident_distrib f g` if the spaces are registered as measure spaces. * `ident_distrib.comp`: being identically distributed is stable under composition with measurable maps. There are two main kind of lemmas, under the assumption that `f` and `g` are identically distributed: lemmas saying that two quantities computed for `f` and `g` are the same, and lemmas saying that if `f` has some property then `g` also has it. The first kind is registered as `ident_distrib.foo_eq`, the second one as `ident_distrib.foo_snd` (in the latter case, to deduce a property of `f` from one of `g`, use `h.symm.foo_snd` where `h : ident_distrib f g μ ν`). For instance: * `ident_distrib.measure_mem_eq`: if `f` and `g` are identically distributed, then the probabilities that they belong to a given measurable set are the same. * `ident_distrib.integral_eq`: if `f` and `g` are identically distributed, then their integrals are the same. * `ident_distrib.variance_eq`: if `f` and `g` are identically distributed, then their variances are the same. * `ident_distrib.ae_strongly_measurable_snd`: if `f` and `g` are identically distributed and `f` is almost everywhere strongly measurable, then so is `g`. * `ident_distrib.mem_ℒp_snd`: if `f` and `g` are identically distributed and `f` belongs to `ℒp`, then so does `g`. We also register several dot notation shortcuts for convenience. For instance, if `h : ident_distrib f g μ ν`, then `h.sq` states that `f^2` and `g^2` are identically distributed, and `h.norm` states that `∥f∥` and `∥g∥` are identically distributed, and so on. -/ open measure_theory filter finset noncomputable theory open_locale topological_space big_operators measure_theory ennreal nnreal variables {α β γ δ : Type*} [measurable_space α] [measurable_space β] [measurable_space γ] [measurable_space δ] namespace probability_theory /-- Two functions defined on two (possibly different) measure spaces are identically distributed if their image measures coincide. This only makes sense when the functions are ae measurable (as otherwise the image measures are not defined), so we require this as well in the definition. -/ structure ident_distrib (f : α → γ) (g : β → γ) (μ : measure α . volume_tac) (ν : measure β . volume_tac) : Prop := (ae_measurable_fst : ae_measurable f μ) (ae_measurable_snd : ae_measurable g ν) (map_eq : measure.map f μ = measure.map g ν) namespace ident_distrib open topological_space variables {μ : measure α} {ν : measure β} {f : α → γ} {g : β → γ} protected lemma refl (hf : ae_measurable f μ) : ident_distrib f f μ μ := { ae_measurable_fst := hf, ae_measurable_snd := hf, map_eq := rfl } protected lemma symm (h : ident_distrib f g μ ν) : ident_distrib g f ν μ := { ae_measurable_fst := h.ae_measurable_snd, ae_measurable_snd := h.ae_measurable_fst, map_eq := h.map_eq.symm } protected lemma trans {ρ : measure δ} {h : δ → γ} (h₁ : ident_distrib f g μ ν) (h₂ : ident_distrib g h ν ρ) : ident_distrib f h μ ρ := { ae_measurable_fst := h₁.ae_measurable_fst, ae_measurable_snd := h₂.ae_measurable_snd, map_eq := h₁.map_eq.trans h₂.map_eq } protected lemma comp_of_ae_measurable {u : γ → δ} (h : ident_distrib f g μ ν) (hu : ae_measurable u (measure.map f μ)) : ident_distrib (u ∘ f) (u ∘ g) μ ν := { ae_measurable_fst := hu.comp_ae_measurable h.ae_measurable_fst, ae_measurable_snd := by { rw h.map_eq at hu, exact hu.comp_ae_measurable h.ae_measurable_snd }, map_eq := begin rw [← ae_measurable.map_map_of_ae_measurable hu h.ae_measurable_fst, ← ae_measurable.map_map_of_ae_measurable _ h.ae_measurable_snd, h.map_eq], rwa ← h.map_eq, end } protected lemma comp {u : γ → δ} (h : ident_distrib f g μ ν) (hu : measurable u) : ident_distrib (u ∘ f) (u ∘ g) μ ν := h.comp_of_ae_measurable hu.ae_measurable protected lemma of_ae_eq {g : α → γ} (hf : ae_measurable f μ) (heq : f =ᵐ[μ] g) : ident_distrib f g μ μ := { ae_measurable_fst := hf, ae_measurable_snd := hf.congr heq, map_eq := measure.map_congr heq } lemma measure_mem_eq (h : ident_distrib f g μ ν) {s : set γ} (hs : measurable_set s) : μ (f ⁻¹' s) = ν (g ⁻¹' s) := by rw [← measure.map_apply_of_ae_measurable h.ae_measurable_fst hs, ← measure.map_apply_of_ae_measurable h.ae_measurable_snd hs, h.map_eq] alias measure_mem_eq ← measure_preimage_eq lemma ae_snd (h : ident_distrib f g μ ν) {p : γ → Prop} (pmeas : measurable_set {x | p x}) (hp : ∀ᵐ x ∂μ, p (f x)) : ∀ᵐ x ∂ν, p (g x) := begin apply (ae_map_iff h.ae_measurable_snd pmeas).1, rw ← h.map_eq, exact (ae_map_iff h.ae_measurable_fst pmeas).2 hp, end lemma ae_mem_snd (h : ident_distrib f g μ ν) {t : set γ} (tmeas : measurable_set t) (ht : ∀ᵐ x ∂μ, f x ∈ t) : ∀ᵐ x ∂ν, g x ∈ t := h.ae_snd tmeas ht /-- In a second countable topology, the first function in an identically distributed pair is a.e. strongly measurable. So is the second function, but use `h.symm.ae_strongly_measurable_fst` as `h.ae_strongly_measurable_snd` has a different meaning.-/ lemma ae_strongly_measurable_fst [topological_space γ] [metrizable_space γ] [opens_measurable_space γ] [second_countable_topology γ] (h : ident_distrib f g μ ν) : ae_strongly_measurable f μ := h.ae_measurable_fst.ae_strongly_measurable /-- If `f` and `g` are identically distributed and `f` is a.e. strongly measurable, so is `g`. -/ lemma ae_strongly_measurable_snd [topological_space γ] [metrizable_space γ] [borel_space γ] (h : ident_distrib f g μ ν) (hf : ae_strongly_measurable f μ) : ae_strongly_measurable g ν := begin refine ae_strongly_measurable_iff_ae_measurable_separable.2 ⟨h.ae_measurable_snd, _⟩, rcases (ae_strongly_measurable_iff_ae_measurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩, refine ⟨closure t, t_sep.closure, _⟩, apply h.ae_mem_snd is_closed_closure.measurable_set, filter_upwards [ht] with x hx using subset_closure hx, end lemma ae_strongly_measurable_iff [topological_space γ] [metrizable_space γ] [borel_space γ] (h : ident_distrib f g μ ν) : ae_strongly_measurable f μ ↔ ae_strongly_measurable g ν := ⟨λ hf, h.ae_strongly_measurable_snd hf, λ hg, h.symm.ae_strongly_measurable_snd hg⟩ lemma ess_sup_eq [conditionally_complete_linear_order γ] [topological_space γ] [opens_measurable_space γ] [order_closed_topology γ] (h : ident_distrib f g μ ν) : ess_sup f μ = ess_sup g ν := begin have I : ∀ a, μ {x : α | a < f x} = ν {x : β | a < g x} := λ a, h.measure_mem_eq measurable_set_Ioi, simp_rw [ess_sup_eq_Inf, I], end lemma lintegral_eq {f : α → ℝ≥0∞} {g : β → ℝ≥0∞} (h : ident_distrib f g μ ν) : ∫⁻ x, f x ∂μ = ∫⁻ x, g x ∂ν := begin change ∫⁻ x, id (f x) ∂μ = ∫⁻ x, id (g x) ∂ν, rw [← lintegral_map' ae_measurable_id h.ae_measurable_fst, ← lintegral_map' ae_measurable_id h.ae_measurable_snd, h.map_eq], end lemma integral_eq [normed_add_comm_group γ] [normed_space ℝ γ] [complete_space γ] [borel_space γ] (h : ident_distrib f g μ ν) : ∫ x, f x ∂μ = ∫ x, g x ∂ν := begin by_cases hf : ae_strongly_measurable f μ, { have A : ae_strongly_measurable id (measure.map f μ), { rw ae_strongly_measurable_iff_ae_measurable_separable, rcases (ae_strongly_measurable_iff_ae_measurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩, refine ⟨ae_measurable_id, ⟨closure t, t_sep.closure, _⟩⟩, rw ae_map_iff h.ae_measurable_fst, { filter_upwards [ht] with x hx using subset_closure hx }, { exact is_closed_closure.measurable_set } }, change ∫ x, id (f x) ∂μ = ∫ x, id (g x) ∂ν, rw [← integral_map h.ae_measurable_fst A], rw h.map_eq at A, rw [← integral_map h.ae_measurable_snd A, h.map_eq] }, { rw integral_non_ae_strongly_measurable hf, rw h.ae_strongly_measurable_iff at hf, rw integral_non_ae_strongly_measurable hf } end lemma snorm_eq [normed_add_comm_group γ] [opens_measurable_space γ] (h : ident_distrib f g μ ν) (p : ℝ≥0∞) : snorm f p μ = snorm g p ν := begin by_cases h0 : p = 0, { simp [h0], }, by_cases h_top : p = ∞, { simp only [h_top, snorm, snorm_ess_sup, ennreal.top_ne_zero, eq_self_iff_true, if_true, if_false], apply ess_sup_eq, exact h.comp (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) }, simp only [snorm_eq_snorm' h0 h_top, snorm', one_div], congr' 1, apply lintegral_eq, exact h.comp (measurable.pow_const (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) p.to_real), end lemma mem_ℒp_snd [normed_add_comm_group γ] [borel_space γ] {p : ℝ≥0∞} (h : ident_distrib f g μ ν) (hf : mem_ℒp f p μ) : mem_ℒp g p ν := begin refine ⟨h.ae_strongly_measurable_snd hf.ae_strongly_measurable, _⟩, rw ← h.snorm_eq, exact hf.2 end lemma mem_ℒp_iff [normed_add_comm_group γ] [borel_space γ] {p : ℝ≥0∞} (h : ident_distrib f g μ ν) : mem_ℒp f p μ ↔ mem_ℒp g p ν := ⟨λ hf, h.mem_ℒp_snd hf, λ hg, h.symm.mem_ℒp_snd hg⟩ lemma integrable_snd [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) (hf : integrable f μ) : integrable g ν := begin rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact h.mem_ℒp_snd hf end lemma integrable_iff [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) : integrable f μ ↔ integrable g ν := ⟨λ hf, h.integrable_snd hf, λ hg, h.symm.integrable_snd hg⟩ protected lemma norm [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) : ident_distrib (λ x, ∥f x∥) (λ x, ∥g x∥) μ ν := h.comp measurable_norm protected lemma nnnorm [normed_add_comm_group γ] [borel_space γ] (h : ident_distrib f g μ ν) : ident_distrib (λ x, ∥f x∥₊) (λ x, ∥g x∥₊) μ ν := h.comp measurable_nnnorm protected lemma pow [has_pow γ ℕ] [has_measurable_pow γ ℕ] (h : ident_distrib f g μ ν) {n : ℕ} : ident_distrib (λ x, (f x) ^ n) (λ x, (g x) ^ n) μ ν := h.comp (measurable_id.pow_const n) protected lemma sq [has_pow γ ℕ] [has_measurable_pow γ ℕ] (h : ident_distrib f g μ ν) : ident_distrib (λ x, (f x) ^ 2) (λ x, (g x) ^ 2) μ ν := h.comp (measurable_id.pow_const 2) protected lemma coe_nnreal_ennreal {f : α → ℝ≥0} {g : β → ℝ≥0} (h : ident_distrib f g μ ν) : ident_distrib (λ x, (f x : ℝ≥0∞)) (λ x, (g x : ℝ≥0∞)) μ ν := h.comp measurable_coe_nnreal_ennreal @[to_additive] lemma mul_const [has_mul γ] [has_measurable_mul γ] (h : ident_distrib f g μ ν) (c : γ) : ident_distrib (λ x, f x * c) (λ x, g x * c) μ ν := h.comp (measurable_mul_const c) @[to_additive] lemma const_mul [has_mul γ] [has_measurable_mul γ] (h : ident_distrib f g μ ν) (c : γ) : ident_distrib (λ x, c * f x) (λ x, c * g x) μ ν := h.comp (measurable_const_mul c) @[to_additive] lemma div_const [has_div γ] [has_measurable_div γ] (h : ident_distrib f g μ ν) (c : γ) : ident_distrib (λ x, f x / c) (λ x, g x / c) μ ν := h.comp (has_measurable_div.measurable_div_const c) @[to_additive] lemma const_div [has_div γ] [has_measurable_div γ] (h : ident_distrib f g μ ν) (c : γ) : ident_distrib (λ x, c / f x) (λ x, c / g x) μ ν := h.comp (has_measurable_div.measurable_const_div c) lemma variance_eq {f : α → ℝ} {g : β → ℝ} (h : ident_distrib f g μ ν) : variance f μ = variance g ν := begin convert (h.sub_const (∫ x, f x ∂μ)).sq.integral_eq, rw h.integral_eq, refl end end ident_distrib section uniform_integrable open topological_space variables {E : Type*} [measurable_space E] [normed_add_comm_group E] [borel_space E] [second_countable_topology E] {μ : measure α} [is_finite_measure μ] /-- This lemma is superceded by `mem_ℒp.uniform_integrable_of_ident_distrib` which only require `ae_strongly_measurable`. -/ lemma mem_ℒp.uniform_integrable_of_ident_distrib_aux {ι : Type*} {f : ι → α → E} {j : ι} {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) (hℒp : mem_ℒp (f j) p μ) (hfmeas : ∀ i, strongly_measurable (f i)) (hf : ∀ i, ident_distrib (f i) (f j) μ μ) : uniform_integrable f p μ := begin refine uniform_integrable_of' hp hp' hfmeas (λ ε hε, _), by_cases hι : nonempty ι, swap, { exact ⟨0, λ i, false.elim (hι $ nonempty.intro i)⟩ }, obtain ⟨C, hC₁, hC₂⟩ := hℒp.snorm_indicator_norm_ge_pos_le μ (hfmeas _) hε, have hmeas : ∀ i, measurable_set {x | (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ∥f i x∥₊} := λ i, measurable_set_le measurable_const (hfmeas _).measurable.nnnorm, refine ⟨⟨C, hC₁.le⟩, λ i, le_trans (le_of_eq _) hC₂⟩, have : {x : α | (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ∥f i x∥₊}.indicator (f i) = (λ x : E, if (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ∥x∥₊ then x else 0) ∘ (f i), { ext x, simp only [set.indicator, set.mem_set_of_eq] }, simp_rw [coe_nnnorm, this], rw [← snorm_map_measure _ (hf i).ae_measurable_fst, (hf i).map_eq, snorm_map_measure _ (hf j).ae_measurable_fst], { refl }, all_goals { exact ae_strongly_measurable_id.indicator (measurable_set_le measurable_const measurable_nnnorm) }, end /-- A sequence of identically distributed Lᵖ functions is p-uniformly integrable. -/ lemma mem_ℒp.uniform_integrable_of_ident_distrib {ι : Type*} {f : ι → α → E} {j : ι} {p : ℝ≥0∞} (hp : 1 ≤ p) (hp' : p ≠ ∞) (hℒp : mem_ℒp (f j) p μ) (hf : ∀ i, ident_distrib (f i) (f j) μ μ) : uniform_integrable f p μ := begin have hfmeas : ∀ i, ae_strongly_measurable (f i) μ := λ i, (hf i).ae_strongly_measurable_iff.2 hℒp.1, set g : ι → α → E := λ i, (hfmeas i).some, have hgmeas : ∀ i, strongly_measurable (g i) := λ i, (Exists.some_spec $ hfmeas i).1, have hgeq : ∀ i, g i =ᵐ[μ] f i := λ i, (Exists.some_spec $ hfmeas i).2.symm, have hgℒp : mem_ℒp (g j) p μ := hℒp.ae_eq (hgeq j).symm, exact uniform_integrable.ae_eq (mem_ℒp.uniform_integrable_of_ident_distrib_aux hp hp' hgℒp hgmeas $ λ i, (ident_distrib.of_ae_eq (hgmeas i).ae_measurable (hgeq i)).trans ((hf i).trans $ ident_distrib.of_ae_eq (hfmeas j).ae_measurable (hgeq j).symm)) hgeq, end end uniform_integrable end probability_theory