/- Copyright (c) 2021 Ashwin Iyengar. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard, Johan Commelin, Ashwin Iyengar, Patrick Massot -/ import group_theory.subgroup.basic import topology.algebra.open_subgroup import topology.algebra.ring /-! # Nonarchimedean Topology In this file we set up the theory of nonarchimedean topological groups and rings. A nonarchimedean group is a topological group whose topology admits a basis of open neighborhoods of the identity element in the group consisting of open subgroups. A nonarchimedean ring is a topological ring whose underlying topological (additive) group is nonarchimedean. ## Definitions - `nonarchimedean_add_group`: nonarchimedean additive group. - `nonarchimedean_group`: nonarchimedean multiplicative group. - `nonarchimedean_ring`: nonarchimedean ring. -/ open_locale pointwise /-- An topological additive group is nonarchimedean if every neighborhood of 0 contains an open subgroup. -/ class nonarchimedean_add_group (G : Type*) [add_group G] [topological_space G] extends topological_add_group G : Prop := (is_nonarchimedean : ∀ U ∈ nhds (0 : G), ∃ V : open_add_subgroup G, (V : set G) ⊆ U) /-- A topological group is nonarchimedean if every neighborhood of 1 contains an open subgroup. -/ @[to_additive] class nonarchimedean_group (G : Type*) [group G] [topological_space G] extends topological_group G : Prop := (is_nonarchimedean : ∀ U ∈ nhds (1 : G), ∃ V : open_subgroup G, (V : set G) ⊆ U) /-- An topological ring is nonarchimedean if its underlying topological additive group is nonarchimedean. -/ class nonarchimedean_ring (R : Type*) [ring R] [topological_space R] extends topological_ring R : Prop := (is_nonarchimedean : ∀ U ∈ nhds (0 : R), ∃ V : open_add_subgroup R, (V : set R) ⊆ U) /-- Every nonarchimedean ring is naturally a nonarchimedean additive group. -/ @[priority 100] -- see Note [lower instance priority] instance nonarchimedean_ring.to_nonarchimedean_add_group (R : Type*) [ring R] [topological_space R] [t: nonarchimedean_ring R] : nonarchimedean_add_group R := {..t} namespace nonarchimedean_group variables {G : Type*} [group G] [topological_space G] [nonarchimedean_group G] variables {H : Type*} [group H] [topological_space H] [topological_group H] variables {K : Type*} [group K] [topological_space K] [nonarchimedean_group K] /-- If a topological group embeds into a nonarchimedean group, then it is nonarchimedean. -/ @[to_additive nonarchimedean_add_group.nonarchimedean_of_emb] lemma nonarchimedean_of_emb (f : G →* H) (emb : open_embedding f) : nonarchimedean_group H := { is_nonarchimedean := λ U hU, have h₁ : (f ⁻¹' U) ∈ nhds (1 : G), from by {apply emb.continuous.tendsto, rwa f.map_one}, let ⟨V, hV⟩ := is_nonarchimedean (f ⁻¹' U) h₁ in ⟨{is_open' := emb.is_open_map _ V.is_open, ..subgroup.map f V}, set.image_subset_iff.2 hV⟩ } /-- An open neighborhood of the identity in the cartesian product of two nonarchimedean groups contains the cartesian product of an open neighborhood in each group. -/ @[to_additive nonarchimedean_add_group.prod_subset] lemma prod_subset {U} (hU : U ∈ nhds (1 : G × K)) : ∃ (V : open_subgroup G) (W : open_subgroup K), (V : set G) ×ˢ (W : set K) ⊆ U := begin erw [nhds_prod_eq, filter.mem_prod_iff] at hU, rcases hU with ⟨U₁, hU₁, U₂, hU₂, h⟩, cases is_nonarchimedean _ hU₁ with V hV, cases is_nonarchimedean _ hU₂ with W hW, use V, use W, rw set.prod_subset_iff, intros x hX y hY, exact set.subset.trans (set.prod_mono hV hW) h (set.mem_sep hX hY), end /-- An open neighborhood of the identity in the cartesian square of a nonarchimedean group contains the cartesian square of an open neighborhood in the group. -/ @[to_additive nonarchimedean_add_group.prod_self_subset] lemma prod_self_subset {U} (hU : U ∈ nhds (1 : G × G)) : ∃ (V : open_subgroup G), (V : set G) ×ˢ (V : set G) ⊆ U := let ⟨V, W, h⟩ := prod_subset hU in ⟨V ⊓ W, by {refine set.subset.trans (set.prod_mono _ _) ‹_›; simp}⟩ /-- The cartesian product of two nonarchimedean groups is nonarchimedean. -/ @[to_additive] instance : nonarchimedean_group (G × K) := { is_nonarchimedean := λ U hU, let ⟨V, W, h⟩ := prod_subset hU in ⟨V.prod W, ‹_›⟩ } end nonarchimedean_group namespace nonarchimedean_ring open nonarchimedean_ring open nonarchimedean_add_group variables {R S : Type*} variables [ring R] [topological_space R] [nonarchimedean_ring R] variables [ring S] [topological_space S] [nonarchimedean_ring S] /-- The cartesian product of two nonarchimedean rings is nonarchimedean. -/ instance : nonarchimedean_ring (R × S) := { is_nonarchimedean := nonarchimedean_add_group.is_nonarchimedean } /-- Given an open subgroup `U` and an element `r` of a nonarchimedean ring, there is an open subgroup `V` such that `r • V` is contained in `U`. -/ lemma left_mul_subset (U : open_add_subgroup R) (r : R) : ∃ V : open_add_subgroup R, r • (V : set R) ⊆ U := ⟨U.comap (add_monoid_hom.mul_left r) (continuous_mul_left r), (U : set R).image_preimage_subset _⟩ /-- An open subgroup of a nonarchimedean ring contains the square of another one. -/ lemma mul_subset (U : open_add_subgroup R) : ∃ V : open_add_subgroup R, (V : set R) * V ⊆ U := let ⟨V, H⟩ := prod_self_subset (is_open.mem_nhds (is_open.preimage continuous_mul U.is_open) begin simpa only [set.mem_preimage, open_add_subgroup.mem_coe, prod.snd_zero, mul_zero] using U.zero_mem, end) in begin use V, rintros v ⟨a, b, ha, hb, hv⟩, have hy := H (set.mk_mem_prod ha hb), simp only [set.mem_preimage, open_add_subgroup.mem_coe] at hy, rwa hv at hy end end nonarchimedean_ring