/- Copyright (c) 2018 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Johannes Hölzl -/ import topology.algebra.group_completion import topology.algebra.ring /-! # Completion of topological rings: This files endows the completion of a topological ring with a ring structure. More precisely the instance `uniform_space.completion.ring` builds a ring structure on the completion of a ring endowed with a compatible uniform structure in the sense of `uniform_add_group`. There is also a commutative version when the original ring is commutative. The last part of the file builds a ring structure on the biggest separated quotient of a ring. ## Main declarations: Beyond the instances explained above (that don't have to be explicitly invoked), the main constructions deal with continuous ring morphisms. * `uniform_space.completion.extension_hom`: extends a continuous ring morphism from `R` to a complete separated group `S` to `completion R`. * `uniform_space.completion.map_ring_hom` : promotes a continuous ring morphism from `R` to `S` into a continuous ring morphism from `completion R` to `completion S`. -/ open classical set filter topological_space add_comm_group open_locale classical noncomputable theory universes u namespace uniform_space.completion open dense_inducing uniform_space function variables (α : Type*) [ring α] [uniform_space α] instance : has_one (completion α) := ⟨(1:α)⟩ instance : has_mul (completion α) := ⟨curry $ (dense_inducing_coe.prod dense_inducing_coe).extend (coe ∘ uncurry (*))⟩ @[norm_cast] lemma coe_one : ((1 : α) : completion α) = 1 := rfl variables {α} [topological_ring α] @[norm_cast] lemma coe_mul (a b : α) : ((a * b : α) : completion α) = a * b := ((dense_inducing_coe.prod dense_inducing_coe).extend_eq ((continuous_coe α).comp (@continuous_mul α _ _ _)) (a, b)).symm variables [uniform_add_group α] lemma continuous_mul : continuous (λ p : completion α × completion α, p.1 * p.2) := begin let m := (add_monoid_hom.mul : α →+ α →+ α).compr₂ to_compl, have : continuous (λ p : α × α, m p.1 p.2), from (continuous_coe α).comp continuous_mul, have di : dense_inducing (to_compl : α → completion α), from dense_inducing_coe, convert di.extend_Z_bilin di this, ext ⟨x, y⟩, refl end lemma continuous.mul {β : Type*} [topological_space β] {f g : β → completion α} (hf : continuous f) (hg : continuous g) : continuous (λb, f b * g b) := continuous_mul.comp (hf.prod_mk hg : _) instance : ring (completion α) := { one_mul := assume a, completion.induction_on a (is_closed_eq (continuous.mul continuous_const continuous_id) continuous_id) (assume a, by rw [← coe_one, ← coe_mul, one_mul]), mul_one := assume a, completion.induction_on a (is_closed_eq (continuous.mul continuous_id continuous_const) continuous_id) (assume a, by rw [← coe_one, ← coe_mul, mul_one]), mul_assoc := assume a b c, completion.induction_on₃ a b c (is_closed_eq (continuous.mul (continuous.mul continuous_fst (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd)) (continuous.mul continuous_fst (continuous.mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd)))) (assume a b c, by rw [← coe_mul, ← coe_mul, ← coe_mul, ← coe_mul, mul_assoc]), left_distrib := assume a b c, completion.induction_on₃ a b c (is_closed_eq (continuous.mul continuous_fst (continuous.add (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd))) (continuous.add (continuous.mul continuous_fst (continuous_fst.comp continuous_snd)) (continuous.mul continuous_fst (continuous_snd.comp continuous_snd)))) (assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, mul_add]), right_distrib := assume a b c, completion.induction_on₃ a b c (is_closed_eq (continuous.mul (continuous.add continuous_fst (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd)) (continuous.add (continuous.mul continuous_fst (continuous_snd.comp continuous_snd)) (continuous.mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd)))) (assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, add_mul]), .. add_monoid_with_one.unary, ..completion.add_comm_group, ..completion.has_mul α, ..completion.has_one α } /-- The map from a uniform ring to its completion, as a ring homomorphism. -/ def coe_ring_hom : α →+* completion α := ⟨coe, coe_one α, assume a b, coe_mul a b, coe_zero, assume a b, coe_add a b⟩ lemma continuous_coe_ring_hom : continuous (coe_ring_hom : α → completion α) := continuous_coe α variables {β : Type u} [uniform_space β] [ring β] [uniform_add_group β] [topological_ring β] (f : α →+* β) (hf : continuous f) /-- The completion extension as a ring morphism. -/ def extension_hom [complete_space β] [separated_space β] : completion α →+* β := have hf' : continuous (f : α →+ β), from hf, -- helping the elaborator have hf : uniform_continuous f, from uniform_continuous_add_monoid_hom_of_continuous hf', { to_fun := completion.extension f, map_zero' := by rw [← coe_zero, extension_coe hf, f.map_zero], map_add' := assume a b, completion.induction_on₂ a b (is_closed_eq (continuous_extension.comp continuous_add) ((continuous_extension.comp continuous_fst).add (continuous_extension.comp continuous_snd))) (assume a b, by rw [← coe_add, extension_coe hf, extension_coe hf, extension_coe hf, f.map_add]), map_one' := by rw [← coe_one, extension_coe hf, f.map_one], map_mul' := assume a b, completion.induction_on₂ a b (is_closed_eq (continuous_extension.comp continuous_mul) ((continuous_extension.comp continuous_fst).mul (continuous_extension.comp continuous_snd))) (assume a b, by rw [← coe_mul, extension_coe hf, extension_coe hf, extension_coe hf, f.map_mul]) } instance top_ring_compl : topological_ring (completion α) := { continuous_add := continuous_add, continuous_mul := continuous_mul } /-- The completion map as a ring morphism. -/ def map_ring_hom (hf : continuous f) : completion α →+* completion β := extension_hom (coe_ring_hom.comp f) (continuous_coe_ring_hom.comp hf) variables (R : Type*) [comm_ring R] [uniform_space R] [uniform_add_group R] [topological_ring R] instance : comm_ring (completion R) := { mul_comm := assume a b, completion.induction_on₂ a b (is_closed_eq (continuous_fst.mul continuous_snd) (continuous_snd.mul continuous_fst)) (assume a b, by rw [← coe_mul, ← coe_mul, mul_comm]), ..completion.ring } end uniform_space.completion namespace uniform_space variables {α : Type*} lemma ring_sep_rel (α) [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : separation_setoid α = submodule.quotient_rel (ideal.closure ⊥) := setoid.ext $ λ x y, (add_group_separation_rel x y).trans $ iff.trans (by refl) (submodule.quotient_rel_r_def _).symm lemma ring_sep_quot (α : Type u) [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : quotient (separation_setoid α) = (α ⧸ (⊥ : ideal α).closure) := by rw [@ring_sep_rel α r]; refl /-- Given a topological ring `α` equipped with a uniform structure that makes subtraction uniformly continuous, get an equivalence between the separated quotient of `α` and the quotient ring corresponding to the closure of zero. -/ def sep_quot_equiv_ring_quot (α) [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : quotient (separation_setoid α) ≃ (α ⧸ (⊥ : ideal α).closure) := quotient.congr_right $ λ x y, (add_group_separation_rel x y).trans $ iff.trans (by refl) (submodule.quotient_rel_r_def _).symm /- TODO: use a form of transport a.k.a. lift definition a.k.a. transfer -/ instance comm_ring [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : comm_ring (quotient (separation_setoid α)) := by rw ring_sep_quot α; apply_instance instance topological_ring [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : topological_ring (quotient (separation_setoid α)) := begin convert topological_ring_quotient (⊥ : ideal α).closure; try {apply ring_sep_rel}, simp [uniform_space.comm_ring] end end uniform_space