/- Copyright (c) 2018 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton -/ import tactic.tidy import topology.continuous_function.basic import topology.homeomorph import topology.subset_properties import topology.maps /-! # The compact-open topology In this file, we define the compact-open topology on the set of continuous maps between two topological spaces. ## Main definitions * `compact_open` is the compact-open topology on `C(α, β)`. It is declared as an instance. * `continuous_map.coev` is the coevaluation map `β → C(α, β × α)`. It is always continuous. * `continuous_map.curry` is the currying map `C(α × β, γ) → C(α, C(β, γ))`. This map always exists and it is continuous as long as `α × β` is locally compact. * `continuous_map.uncurry` is the uncurrying map `C(α, C(β, γ)) → C(α × β, γ)`. For this map to exist, we need `β` to be locally compact. If `α` is also locally compact, then this map is continuous. * `homeomorph.curry` combines the currying and uncurrying operations into a homeomorphism `C(α × β, γ) ≃ₜ C(α, C(β, γ))`. This homeomorphism exists if `α` and `β` are locally compact. ## Tags compact-open, curry, function space -/ open set open_locale topological_space namespace continuous_map section compact_open variables {α : Type*} {β : Type*} {γ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] /-- A generating set for the compact-open topology (when `s` is compact and `u` is open). -/ def compact_open.gen (s : set α) (u : set β) : set C(α,β) := {f | f '' s ⊆ u} @[simp] lemma gen_empty (u : set β) : compact_open.gen (∅ : set α) u = set.univ := set.ext (λ f, iff_true_intro ((congr_arg (⊆ u) (image_empty f)).mpr u.empty_subset)) @[simp] lemma gen_univ (s : set α) : compact_open.gen s (set.univ : set β) = set.univ := set.ext (λ f, iff_true_intro (f '' s).subset_univ) @[simp] lemma gen_inter (s : set α) (u v : set β) : compact_open.gen s (u ∩ v) = compact_open.gen s u ∩ compact_open.gen s v := set.ext (λ f, subset_inter_iff) @[simp] lemma gen_union (s t : set α) (u : set β) : compact_open.gen (s ∪ t) u = compact_open.gen s u ∩ compact_open.gen t u := set.ext (λ f, (iff_of_eq (congr_arg (⊆ u) (image_union f s t))).trans union_subset_iff) lemma gen_empty_right {s : set α} (h : s.nonempty) : compact_open.gen s (∅ : set β) = ∅ := eq_empty_of_forall_not_mem $ λ f, (h.image _).not_subset_empty -- The compact-open topology on the space of continuous maps α → β. instance compact_open : topological_space C(α, β) := topological_space.generate_from {m | ∃ (s : set α) (hs : is_compact s) (u : set β) (hu : is_open u), m = compact_open.gen s u} protected lemma is_open_gen {s : set α} (hs : is_compact s) {u : set β} (hu : is_open u) : is_open (compact_open.gen s u) := topological_space.generate_open.basic _ (by dsimp [mem_set_of_eq]; tauto) section functorial variables (g : C(β, γ)) private lemma preimage_gen {s : set α} (hs : is_compact s) {u : set γ} (hu : is_open u) : continuous_map.comp g ⁻¹' (compact_open.gen s u) = compact_open.gen s (g ⁻¹' u) := begin ext ⟨f, _⟩, change g ∘ f '' s ⊆ u ↔ f '' s ⊆ g ⁻¹' u, rw [image_comp, image_subset_iff] end /-- C(α, -) is a functor. -/ lemma continuous_comp : continuous (continuous_map.comp g : C(α, β) → C(α, γ)) := continuous_generated_from $ assume m ⟨s, hs, u, hu, hm⟩, by rw [hm, preimage_gen g hs hu]; exact continuous_map.is_open_gen hs (hu.preimage g.2) variable (f : C(α, β)) private lemma image_gen {s : set α} (hs : is_compact s) {u : set γ} (hu : is_open u) : (λ g : C(β, γ), g.comp f) ⁻¹' compact_open.gen s u = compact_open.gen (f '' s) u := begin ext ⟨g, _⟩, change g ∘ f '' s ⊆ u ↔ g '' (f '' s) ⊆ u, rw set.image_comp, end /-- C(-, γ) is a functor. -/ lemma continuous_comp_left : continuous (λ g, g.comp f : C(β, γ) → C(α, γ)) := continuous_generated_from $ assume m ⟨s, hs, u, hu, hm⟩, by { rw [hm, image_gen f hs hu], exact continuous_map.is_open_gen (hs.image f.2) hu } end functorial section ev variables {α β} /-- The evaluation map `C(α, β) × α → β` is continuous if `α` is locally compact. See also `continuous_map.continuous_eval` -/ lemma continuous_eval' [locally_compact_space α] : continuous (λ p : C(α, β) × α, p.1 p.2) := continuous_iff_continuous_at.mpr $ assume ⟨f, x⟩ n hn, let ⟨v, vn, vo, fxv⟩ := mem_nhds_iff.mp hn in have v ∈ 𝓝 (f x), from is_open.mem_nhds vo fxv, let ⟨s, hs, sv, sc⟩ := locally_compact_space.local_compact_nhds x (f ⁻¹' v) (f.continuous.tendsto x this) in let ⟨u, us, uo, xu⟩ := mem_nhds_iff.mp hs in show (λ p : C(α, β) × α, p.1 p.2) ⁻¹' n ∈ 𝓝 (f, x), from let w := compact_open.gen s v ×ˢ u in have w ⊆ (λ p : C(α, β) × α, p.1 p.2) ⁻¹' n, from assume ⟨f', x'⟩ ⟨hf', hx'⟩, calc f' x' ∈ f' '' s : mem_image_of_mem f' (us hx') ... ⊆ v : hf' ... ⊆ n : vn, have is_open w, from (continuous_map.is_open_gen sc vo).prod uo, have (f, x) ∈ w, from ⟨image_subset_iff.mpr sv, xu⟩, mem_nhds_iff.mpr ⟨w, by assumption, by assumption, by assumption⟩ /-- See also `continuous_map.continuous_eval_const` -/ lemma continuous_eval_const' [locally_compact_space α] (a : α) : continuous (λ f : C(α, β), f a) := continuous_eval'.comp (continuous_id.prod_mk continuous_const) /-- See also `continuous_map.continuous_coe` -/ lemma continuous_coe' [locally_compact_space α] : @continuous (C(α, β)) (α → β) _ _ coe_fn := continuous_pi continuous_eval_const' instance [t2_space β] : t2_space C(α, β) := ⟨ begin intros f₁ f₂ h, obtain ⟨x, hx⟩ := not_forall.mp (mt (fun_like.ext f₁ f₂) h), obtain ⟨u, v, hu, hv, hxu, hxv, huv⟩ := t2_separation hx, refine ⟨compact_open.gen {x} u, compact_open.gen {x} v, continuous_map.is_open_gen is_compact_singleton hu, continuous_map.is_open_gen is_compact_singleton hv, _, _, _⟩, { rwa [compact_open.gen, mem_set_of_eq, image_singleton, singleton_subset_iff] }, { rwa [compact_open.gen, mem_set_of_eq, image_singleton, singleton_subset_iff] }, { rw [disjoint_iff_inter_eq_empty, ←gen_inter, huv.inter_eq, gen_empty_right (singleton_nonempty _)] } end ⟩ end ev section Inf_induced lemma compact_open_le_induced (s : set α) : (continuous_map.compact_open : topological_space C(α, β)) ≤ topological_space.induced (continuous_map.restrict s) continuous_map.compact_open := begin simp only [induced_generate_from_eq, continuous_map.compact_open], apply generate_from_mono, rintros b ⟨a, ⟨c, hc, u, hu, rfl⟩, rfl⟩, refine ⟨coe '' c, hc.image continuous_subtype_coe, u, hu, _⟩, ext f, simp only [compact_open.gen, mem_set_of_eq, mem_preimage, continuous_map.coe_restrict], rw image_comp f (coe : s → α), end /-- The compact-open topology on `C(α, β)` is equal to the infimum of the compact-open topologies on `C(s, β)` for `s` a compact subset of `α`. The key point of the proof is that the union of the compact subsets of `α` is equal to the union of compact subsets of the compact subsets of `α`. -/ lemma compact_open_eq_Inf_induced : (continuous_map.compact_open : topological_space C(α, β)) = ⨅ (s : set α) (hs : is_compact s), topological_space.induced (continuous_map.restrict s) continuous_map.compact_open := begin refine le_antisymm _ _, { refine le_infi₂ _, exact λ s hs, compact_open_le_induced s }, simp only [← generate_from_Union, induced_generate_from_eq, continuous_map.compact_open], apply generate_from_mono, rintros _ ⟨s, hs, u, hu, rfl⟩, rw mem_Union₂, refine ⟨s, hs, _, ⟨univ, is_compact_iff_is_compact_univ.mp hs, u, hu, rfl⟩, _⟩, ext f, simp only [compact_open.gen, mem_set_of_eq, mem_preimage, continuous_map.coe_restrict], rw image_comp f (coe : s → α), simp end /-- For any subset `s` of `α`, the restriction of continuous functions to `s` is continuous as a function from `C(α, β)` to `C(s, β)` with their respective compact-open topologies. -/ lemma continuous_restrict (s : set α) : continuous (λ F : C(α, β), F.restrict s) := by { rw continuous_iff_le_induced, exact compact_open_le_induced s } lemma nhds_compact_open_eq_Inf_nhds_induced (f : C(α, β)) : 𝓝 f = ⨅ s (hs : is_compact s), (𝓝 (f.restrict s)).comap (continuous_map.restrict s) := by { rw [compact_open_eq_Inf_induced], simp [nhds_infi, nhds_induced] } lemma tendsto_compact_open_restrict {ι : Type*} {l : filter ι} {F : ι → C(α, β)} {f : C(α, β)} (hFf : filter.tendsto F l (𝓝 f)) (s : set α) : filter.tendsto (λ i, (F i).restrict s) l (𝓝 (f.restrict s)) := (continuous_restrict s).continuous_at.tendsto.comp hFf lemma tendsto_compact_open_iff_forall {ι : Type*} {l : filter ι} (F : ι → C(α, β)) (f : C(α, β)) : filter.tendsto F l (𝓝 f) ↔ ∀ s (hs : is_compact s), filter.tendsto (λ i, (F i).restrict s) l (𝓝 (f.restrict s)) := by { rw [compact_open_eq_Inf_induced], simp [nhds_infi, nhds_induced, filter.tendsto_comap_iff] } /-- A family `F` of functions in `C(α, β)` converges in the compact-open topology, if and only if it converges in the compact-open topology on each compact subset of `α`. -/ lemma exists_tendsto_compact_open_iff_forall [locally_compact_space α] [t2_space α] [t2_space β] {ι : Type*} {l : filter ι} [filter.ne_bot l] (F : ι → C(α, β)) : (∃ f, filter.tendsto F l (𝓝 f)) ↔ ∀ (s : set α) (hs : is_compact s), ∃ f, filter.tendsto (λ i, (F i).restrict s) l (𝓝 f) := begin split, { rintros ⟨f, hf⟩ s hs, exact ⟨f.restrict s, tendsto_compact_open_restrict hf s⟩ }, { intros h, choose f hf using h, -- By uniqueness of limits in a `t2_space`, since `λ i, F i x` tends to both `f s₁ hs₁ x` and -- `f s₂ hs₂ x`, we have `f s₁ hs₁ x = f s₂ hs₂ x` have h : ∀ s₁ (hs₁ : is_compact s₁) s₂ (hs₂ : is_compact s₂) (x : α) (hxs₁ : x ∈ s₁) (hxs₂ : x ∈ s₂), f s₁ hs₁ ⟨x, hxs₁⟩ = f s₂ hs₂ ⟨x, hxs₂⟩, { rintros s₁ hs₁ s₂ hs₂ x hxs₁ hxs₂, haveI := is_compact_iff_compact_space.mp hs₁, haveI := is_compact_iff_compact_space.mp hs₂, have h₁ := (continuous_eval_const' (⟨x, hxs₁⟩ : s₁)).continuous_at.tendsto.comp (hf s₁ hs₁), have h₂ := (continuous_eval_const' (⟨x, hxs₂⟩ : s₂)).continuous_at.tendsto.comp (hf s₂ hs₂), exact tendsto_nhds_unique h₁ h₂ }, -- So glue the `f s hs` together and prove that this glued function `f₀` is a limit on each -- compact set `s` have hs : ∀ x : α, ∃ s (hs : is_compact s), s ∈ 𝓝 x, { intros x, obtain ⟨s, hs, hs'⟩ := exists_compact_mem_nhds x, exact ⟨s, hs, hs'⟩ }, refine ⟨lift_cover' _ _ h hs, _⟩, rw tendsto_compact_open_iff_forall, intros s hs, rw lift_cover_restrict', exact hf s hs } end end Inf_induced section coev variables (α β) /-- The coevaluation map `β → C(α, β × α)` sending a point `x : β` to the continuous function on `α` sending `y` to `(x, y)`. -/ def coev (b : β) : C(α, β × α) := ⟨prod.mk b, continuous_const.prod_mk continuous_id⟩ variables {α β} lemma image_coev {y : β} (s : set α) : (coev α β y) '' s = ({y} : set β) ×ˢ s := by tidy -- The coevaluation map β → C(α, β × α) is continuous (always). lemma continuous_coev : continuous (coev α β) := continuous_generated_from $ begin rintros _ ⟨s, sc, u, uo, rfl⟩, rw is_open_iff_forall_mem_open, intros y hy, change (coev α β y) '' s ⊆ u at hy, rw image_coev s at hy, rcases generalized_tube_lemma is_compact_singleton sc uo hy with ⟨v, w, vo, wo, yv, sw, vwu⟩, refine ⟨v, _, vo, singleton_subset_iff.mp yv⟩, intros y' hy', change (coev α β y') '' s ⊆ u, rw image_coev s, exact subset.trans (prod_mono (singleton_subset_iff.mpr hy') sw) vwu end end coev section curry /-- Auxiliary definition, see `continuous_map.curry` and `homeomorph.curry`. -/ def curry' (f : C(α × β, γ)) (a : α) : C(β, γ) := ⟨function.curry f a⟩ /-- If a map `α × β → γ` is continuous, then its curried form `α → C(β, γ)` is continuous. -/ lemma continuous_curry' (f : C(α × β, γ)) : continuous (curry' f) := have hf : curry' f = continuous_map.comp f ∘ coev _ _, by { ext, refl }, hf ▸ continuous.comp (continuous_comp f) continuous_coev /-- To show continuity of a map `α → C(β, γ)`, it suffices to show that its uncurried form `α × β → γ` is continuous. -/ lemma continuous_of_continuous_uncurry (f : α → C(β, γ)) (h : continuous (function.uncurry (λ x y, f x y))) : continuous f := by { convert continuous_curry' ⟨_, h⟩, ext, refl } /-- The curried form of a continuous map `α × β → γ` as a continuous map `α → C(β, γ)`. If `a × β` is locally compact, this is continuous. If `α` and `β` are both locally compact, then this is a homeomorphism, see `homeomorph.curry`. -/ def curry (f : C(α × β, γ)) : C(α, C(β, γ)) := ⟨_, continuous_curry' f⟩ /-- The currying process is a continuous map between function spaces. -/ lemma continuous_curry [locally_compact_space (α × β)] : continuous (curry : C(α × β, γ) → C(α, C(β, γ))) := begin apply continuous_of_continuous_uncurry, apply continuous_of_continuous_uncurry, rw ←homeomorph.comp_continuous_iff' (homeomorph.prod_assoc _ _ _).symm, convert continuous_eval'; tidy end @[simp] lemma curry_apply (f : C(α × β, γ)) (a : α) (b : β) : f.curry a b = f (a, b) := rfl /-- The uncurried form of a continuous map `α → C(β, γ)` is a continuous map `α × β → γ`. -/ lemma continuous_uncurry_of_continuous [locally_compact_space β] (f : C(α, C(β, γ))) : continuous (function.uncurry (λ x y, f x y)) := continuous_eval'.comp $ f.continuous.prod_map continuous_id /-- The uncurried form of a continuous map `α → C(β, γ)` as a continuous map `α × β → γ` (if `β` is locally compact). If `α` is also locally compact, then this is a homeomorphism between the two function spaces, see `homeomorph.curry`. -/ @[simps] def uncurry [locally_compact_space β] (f : C(α, C(β, γ))) : C(α × β, γ) := ⟨_, continuous_uncurry_of_continuous f⟩ /-- The uncurrying process is a continuous map between function spaces. -/ lemma continuous_uncurry [locally_compact_space α] [locally_compact_space β] : continuous (uncurry : C(α, C(β, γ)) → C(α × β, γ)) := begin apply continuous_of_continuous_uncurry, rw ←homeomorph.comp_continuous_iff' (homeomorph.prod_assoc _ _ _), apply continuous.comp continuous_eval' (continuous.prod_map continuous_eval' continuous_id); apply_instance end /-- The family of constant maps: `β → C(α, β)` as a continuous map. -/ def const' : C(β, C(α, β)) := curry ⟨prod.fst, continuous_fst⟩ @[simp] lemma coe_const' : (const' : β → C(α, β)) = const α := rfl lemma continuous_const' : continuous (const α : β → C(α, β)) := const'.continuous end curry end compact_open end continuous_map open continuous_map namespace homeomorph variables {α : Type*} {β : Type*} {γ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] /-- Currying as a homeomorphism between the function spaces `C(α × β, γ)` and `C(α, C(β, γ))`. -/ def curry [locally_compact_space α] [locally_compact_space β] : C(α × β, γ) ≃ₜ C(α, C(β, γ)) := ⟨⟨curry, uncurry, by tidy, by tidy⟩, continuous_curry, continuous_uncurry⟩ /-- If `α` has a single element, then `β` is homeomorphic to `C(α, β)`. -/ def continuous_map_of_unique [unique α] : β ≃ₜ C(α, β) := { to_fun := const α, inv_fun := λ f, f default, left_inv := λ a, rfl, right_inv := λ f, by { ext, rw unique.eq_default a, refl }, continuous_to_fun := continuous_const', continuous_inv_fun := continuous_eval'.comp (continuous_id.prod_mk continuous_const) } @[simp] lemma continuous_map_of_unique_apply [unique α] (b : β) (a : α) : continuous_map_of_unique b a = b := rfl @[simp] lemma continuous_map_of_unique_symm_apply [unique α] (f : C(α, β)) : continuous_map_of_unique.symm f = f default := rfl end homeomorph section quotient_map variables {X₀ X Y Z : Type*} [topological_space X₀] [topological_space X] [topological_space Y] [topological_space Z] [locally_compact_space Y] {f : X₀ → X} lemma quotient_map.continuous_lift_prod_left (hf : quotient_map f) {g : X × Y → Z} (hg : continuous (λ p : X₀ × Y, g (f p.1, p.2))) : continuous g := begin let Gf : C(X₀, C(Y, Z)) := continuous_map.curry ⟨_, hg⟩, have h : ∀ x : X, continuous (λ y, g (x, y)), { intros x, obtain ⟨x₀, rfl⟩ := hf.surjective x, exact (Gf x₀).continuous }, let G : X → C(Y, Z) := λ x, ⟨_, h x⟩, have : continuous G, { rw hf.continuous_iff, exact Gf.continuous }, convert continuous_map.continuous_uncurry_of_continuous ⟨G, this⟩, ext x, cases x, refl, end lemma quotient_map.continuous_lift_prod_right (hf : quotient_map f) {g : Y × X → Z} (hg : continuous (λ p : Y × X₀, g (p.1, f p.2))) : continuous g := begin have : continuous (λ p : X₀ × Y, g ((prod.swap p).1, f (prod.swap p).2)), { exact hg.comp continuous_swap }, have : continuous (λ p : X₀ × Y, (g ∘ prod.swap) (f p.1, p.2)) := this, convert (hf.continuous_lift_prod_left this).comp continuous_swap, ext x, simp, end end quotient_map