/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Nicolò Cavalleri -/ import topology.algebra.module.basic import topology.continuous_function.ordered import topology.algebra.uniform_group import topology.uniform_space.compact_convergence import topology.algebra.star import algebra.algebra.subalgebra.basic import tactic.field_simp /-! # Algebraic structures over continuous functions In this file we define instances of algebraic structures over the type `continuous_map α β` (denoted `C(α, β)`) of **bundled** continuous maps from `α` to `β`. For example, `C(α, β)` is a group when `β` is a group, a ring when `β` is a ring, etc. For each type of algebraic structure, we also define an appropriate subobject of `α → β` with carrier `{ f : α → β | continuous f }`. For example, when `β` is a group, a subgroup `continuous_subgroup α β` of `α → β` is constructed with carrier `{ f : α → β | continuous f }`. Note that, rather than using the derived algebraic structures on these subobjects (for example, when `β` is a group, the derived group structure on `continuous_subgroup α β`), one should use `C(α, β)` with the appropriate instance of the structure. -/ local attribute [elab_simple] continuous.comp namespace continuous_functions variables {α : Type*} {β : Type*} [topological_space α] [topological_space β] variables {f g : {f : α → β | continuous f }} instance : has_coe_to_fun {f : α → β | continuous f} (λ _, α → β) := ⟨subtype.val⟩ end continuous_functions namespace continuous_map variables {α : Type*} {β : Type*} {γ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] @[to_additive] instance has_mul [has_mul β] [has_continuous_mul β] : has_mul C(α, β) := ⟨λ f g, ⟨f * g, continuous_mul.comp (f.continuous.prod_mk g.continuous : _)⟩⟩ @[simp, norm_cast, to_additive] lemma coe_mul [has_mul β] [has_continuous_mul β] (f g : C(α, β)) : ⇑(f * g) = f * g := rfl @[simp, to_additive] lemma mul_comp [has_mul γ] [has_continuous_mul γ] (f₁ f₂ : C(β, γ)) (g : C(α, β)) : (f₁ * f₂).comp g = f₁.comp g * f₂.comp g := rfl @[to_additive] instance [has_one β] : has_one C(α, β) := ⟨const α 1⟩ @[simp, norm_cast, to_additive] lemma coe_one [has_one β] : ⇑(1 : C(α, β)) = 1 := rfl @[simp, to_additive] lemma one_comp [has_one γ] (g : C(α, β)) : (1 : C(β, γ)).comp g = 1 := rfl instance [has_nat_cast β] : has_nat_cast C(α, β) := ⟨λ n, continuous_map.const _ n⟩ @[simp, norm_cast] lemma coe_nat_cast [has_nat_cast β] (n : ℕ) : ((n : C(α, β)) : α → β) = n := rfl instance [has_int_cast β] : has_int_cast C(α, β) := ⟨λ n, continuous_map.const _ n⟩ @[simp, norm_cast] lemma coe_int_cast [has_int_cast β] (n : ℤ) : ((n : C(α, β)) : α → β) = n := rfl instance has_nsmul [add_monoid β] [has_continuous_add β] : has_smul ℕ C(α, β) := ⟨λ n f, ⟨n • f, f.continuous.nsmul n⟩⟩ @[to_additive] instance has_pow [monoid β] [has_continuous_mul β] : has_pow C(α, β) ℕ := ⟨λ f n, ⟨f ^ n, f.continuous.pow n⟩⟩ @[norm_cast, to_additive] lemma coe_pow [monoid β] [has_continuous_mul β] (f : C(α, β)) (n : ℕ) : ⇑(f ^ n) = f ^ n := rfl -- don't make `coe_nsmul` simp as the linter complains it's redundant WRT `coe_smul` attribute [simp] coe_pow @[to_additive] lemma pow_comp [monoid γ] [has_continuous_mul γ] (f : C(β, γ)) (n : ℕ) (g : C(α, β)) : (f^n).comp g = (f.comp g)^n := rfl -- don't make `nsmul_comp` simp as the linter complains it's redundant WRT `smul_comp` attribute [simp] pow_comp @[to_additive] instance [group β] [topological_group β] : has_inv C(α, β) := { inv := λ f, ⟨f⁻¹, f.continuous.inv⟩ } @[simp, norm_cast, to_additive] lemma coe_inv [group β] [topological_group β] (f : C(α, β)) : ⇑(f⁻¹) = f⁻¹ := rfl @[simp, to_additive] lemma inv_comp [group γ] [topological_group γ] (f : C(β, γ)) (g : C(α, β)) : (f⁻¹).comp g = (f.comp g)⁻¹ := rfl @[to_additive] instance [has_div β] [has_continuous_div β] : has_div C(α, β) := { div := λ f g, ⟨f / g, f.continuous.div' g.continuous⟩ } @[simp, norm_cast, to_additive] lemma coe_div [has_div β] [has_continuous_div β] (f g : C(α, β)) : ⇑(f / g) = f / g := rfl @[simp, to_additive] lemma div_comp [has_div γ] [has_continuous_div γ] (f g : C(β, γ)) (h : C(α, β)) : (f / g).comp h = (f.comp h) / (g.comp h) := rfl instance has_zsmul [add_group β] [topological_add_group β] : has_smul ℤ C(α, β) := { smul := λ z f, ⟨z • f, f.continuous.zsmul z⟩ } @[to_additive] instance has_zpow [group β] [topological_group β] : has_pow C(α, β) ℤ := { pow := λ f z, ⟨f ^ z, f.continuous.zpow z⟩ } @[norm_cast, to_additive] lemma coe_zpow [group β] [topological_group β] (f : C(α, β)) (z : ℤ) : ⇑(f ^ z) = f ^ z := rfl -- don't make `coe_zsmul` simp as the linter complains it's redundant WRT `coe_smul` attribute [simp] coe_zpow @[to_additive] lemma zpow_comp [group γ] [topological_group γ] (f : C(β, γ)) (z : ℤ) (g : C(α, β)) : (f^z).comp g = (f.comp g)^z := rfl -- don't make `zsmul_comp` simp as the linter complains it's redundant WRT `smul_comp` attribute [simp] zpow_comp end continuous_map section group_structure /-! ### Group stucture In this section we show that continuous functions valued in a topological group inherit the structure of a group. -/ section subtype /-- The `submonoid` of continuous maps `α → β`. -/ @[to_additive "The `add_submonoid` of continuous maps `α → β`. "] def continuous_submonoid (α : Type*) (β : Type*) [topological_space α] [topological_space β] [monoid β] [has_continuous_mul β] : submonoid (α → β) := { carrier := { f : α → β | continuous f }, one_mem' := @continuous_const _ _ _ _ 1, mul_mem' := λ f g fc gc, fc.mul gc } /-- The subgroup of continuous maps `α → β`. -/ @[to_additive "The `add_subgroup` of continuous maps `α → β`. "] def continuous_subgroup (α : Type*) (β : Type*) [topological_space α] [topological_space β] [group β] [topological_group β] : subgroup (α → β) := { inv_mem' := λ f fc, continuous.inv fc, ..continuous_submonoid α β, }. end subtype namespace continuous_map @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [semigroup β] [has_continuous_mul β] : semigroup C(α, β) := coe_injective.semigroup _ coe_mul @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_semigroup β] [has_continuous_mul β] : comm_semigroup C(α, β) := coe_injective.comm_semigroup _ coe_mul @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [mul_one_class β] [has_continuous_mul β] : mul_one_class C(α, β) := coe_injective.mul_one_class _ coe_one coe_mul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [mul_zero_class β] [has_continuous_mul β] : mul_zero_class C(α, β) := coe_injective.mul_zero_class _ coe_zero coe_mul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [semigroup_with_zero β] [has_continuous_mul β] : semigroup_with_zero C(α, β) := coe_injective.semigroup_with_zero _ coe_zero coe_mul @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [monoid β] [has_continuous_mul β] : monoid C(α, β) := coe_injective.monoid _ coe_one coe_mul coe_pow instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [monoid_with_zero β] [has_continuous_mul β] : monoid_with_zero C(α, β) := coe_injective.monoid_with_zero _ coe_zero coe_one coe_mul coe_pow @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_monoid β] [has_continuous_mul β] : comm_monoid C(α, β) := coe_injective.comm_monoid _ coe_one coe_mul coe_pow instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_monoid_with_zero β] [has_continuous_mul β] : comm_monoid_with_zero C(α, β) := coe_injective.comm_monoid_with_zero _ coe_zero coe_one coe_mul coe_pow @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [locally_compact_space α] [topological_space β] [has_mul β] [has_continuous_mul β] : has_continuous_mul C(α, β) := ⟨begin refine continuous_of_continuous_uncurry _ _, have h1 : continuous (λ x : (C(α, β) × C(α, β)) × α, x.fst.fst x.snd) := continuous_eval'.comp (continuous_fst.prod_map continuous_id), have h2 : continuous (λ x : (C(α, β) × C(α, β)) × α, x.fst.snd x.snd) := continuous_eval'.comp (continuous_snd.prod_map continuous_id), exact h1.mul h2, end⟩ /-- Coercion to a function as an `monoid_hom`. Similar to `monoid_hom.coe_fn`. -/ @[to_additive "Coercion to a function as an `add_monoid_hom`. Similar to `add_monoid_hom.coe_fn`.", simps] def coe_fn_monoid_hom {α : Type*} {β : Type*} [topological_space α] [topological_space β] [monoid β] [has_continuous_mul β] : C(α, β) →* (α → β) := { to_fun := coe_fn, map_one' := coe_one, map_mul' := coe_mul } /-- Composition on the left by a (continuous) homomorphism of topological monoids, as a `monoid_hom`. Similar to `monoid_hom.comp_left`. -/ @[to_additive "Composition on the left by a (continuous) homomorphism of topological `add_monoid`s, as an `add_monoid_hom`. Similar to `add_monoid_hom.comp_left`.", simps] protected def _root_.monoid_hom.comp_left_continuous (α : Type*) {β : Type*} {γ : Type*} [topological_space α] [topological_space β] [monoid β] [has_continuous_mul β] [topological_space γ] [monoid γ] [has_continuous_mul γ] (g : β →* γ) (hg : continuous g) : C(α, β) →* C(α, γ) := { to_fun := λ f, (⟨g, hg⟩ : C(β, γ)).comp f, map_one' := ext $ λ x, g.map_one, map_mul' := λ f₁ f₂, ext $ λ x, g.map_mul _ _ } /-- Composition on the right as a `monoid_hom`. Similar to `monoid_hom.comp_hom'`. -/ @[to_additive "Composition on the right as an `add_monoid_hom`. Similar to `add_monoid_hom.comp_hom'`.", simps] def comp_monoid_hom' {α : Type*} {β : Type*} {γ : Type*} [topological_space α] [topological_space β] [topological_space γ] [mul_one_class γ] [has_continuous_mul γ] (g : C(α, β)) : C(β, γ) →* C(α, γ) := { to_fun := λ f, f.comp g, map_one' := one_comp g, map_mul' := λ f₁ f₂, mul_comp f₁ f₂ g } open_locale big_operators @[simp, to_additive] lemma coe_prod {α : Type*} {β : Type*} [comm_monoid β] [topological_space α] [topological_space β] [has_continuous_mul β] {ι : Type*} (s : finset ι) (f : ι → C(α, β)) : ⇑(∏ i in s, f i) = (∏ i in s, (f i : α → β)) := (coe_fn_monoid_hom : C(α, β) →* _).map_prod f s @[to_additive] lemma prod_apply {α : Type*} {β : Type*} [comm_monoid β] [topological_space α] [topological_space β] [has_continuous_mul β] {ι : Type*} (s : finset ι) (f : ι → C(α, β)) (a : α) : (∏ i in s, f i) a = (∏ i in s, f i a) := by simp @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [group β] [topological_group β] : group C(α, β) := coe_injective.group _ coe_one coe_mul coe_inv coe_div coe_pow coe_zpow @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_group β] [topological_group β] : comm_group C(α, β) := coe_injective.comm_group _ coe_one coe_mul coe_inv coe_div coe_pow coe_zpow @[to_additive] instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_group β] [topological_group β] : topological_group C(α, β) := { continuous_mul := by { letI : uniform_space β := topological_group.to_uniform_space β, have : uniform_group β := topological_group_is_uniform, rw continuous_iff_continuous_at, rintros ⟨f, g⟩, rw [continuous_at, tendsto_iff_forall_compact_tendsto_uniformly_on, nhds_prod_eq], exactI λ K hK, uniform_continuous_mul.comp_tendsto_uniformly_on ((tendsto_iff_forall_compact_tendsto_uniformly_on.mp filter.tendsto_id K hK).prod (tendsto_iff_forall_compact_tendsto_uniformly_on.mp filter.tendsto_id K hK)), }, continuous_inv := by { letI : uniform_space β := topological_group.to_uniform_space β, have : uniform_group β := topological_group_is_uniform, rw continuous_iff_continuous_at, intro f, rw [continuous_at, tendsto_iff_forall_compact_tendsto_uniformly_on], exactI λ K hK, uniform_continuous_inv.comp_tendsto_uniformly_on (tendsto_iff_forall_compact_tendsto_uniformly_on.mp filter.tendsto_id K hK), } } end continuous_map end group_structure section ring_structure /-! ### Ring stucture In this section we show that continuous functions valued in a topological semiring `R` inherit the structure of a ring. -/ section subtype /-- The subsemiring of continuous maps `α → β`. -/ def continuous_subsemiring (α : Type*) (R : Type*) [topological_space α] [topological_space R] [semiring R] [topological_semiring R] : subsemiring (α → R) := { ..continuous_add_submonoid α R, ..continuous_submonoid α R } /-- The subring of continuous maps `α → β`. -/ def continuous_subring (α : Type*) (R : Type*) [topological_space α] [topological_space R] [ring R] [topological_ring R] : subring (α → R) := { ..continuous_subsemiring α R, ..continuous_add_subgroup α R } end subtype namespace continuous_map instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_unital_non_assoc_semiring β] [topological_semiring β] : non_unital_non_assoc_semiring C(α, β) := coe_injective.non_unital_non_assoc_semiring _ coe_zero coe_add coe_mul coe_nsmul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_unital_semiring β] [topological_semiring β] : non_unital_semiring C(α, β) := coe_injective.non_unital_semiring _ coe_zero coe_add coe_mul coe_nsmul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [add_monoid_with_one β] [has_continuous_add β] : add_monoid_with_one C(α, β) := coe_injective.add_monoid_with_one _ coe_zero coe_one coe_add coe_nsmul coe_nat_cast instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_assoc_semiring β] [topological_semiring β] : non_assoc_semiring C(α, β) := coe_injective.non_assoc_semiring _ coe_zero coe_one coe_add coe_mul coe_nsmul coe_nat_cast instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [semiring β] [topological_semiring β] : semiring C(α, β) := coe_injective.semiring _ coe_zero coe_one coe_add coe_mul coe_nsmul coe_pow coe_nat_cast instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_unital_non_assoc_ring β] [topological_ring β] : non_unital_non_assoc_ring C(α, β) := coe_injective.non_unital_non_assoc_ring _ coe_zero coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_unital_ring β] [topological_ring β] : non_unital_ring C(α, β) := coe_injective.non_unital_ring _ coe_zero coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_assoc_ring β] [topological_ring β] : non_assoc_ring C(α, β) := coe_injective.non_assoc_ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul coe_nat_cast coe_int_cast instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [ring β] [topological_ring β] : ring C(α, β) := coe_injective.ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul coe_pow coe_nat_cast coe_int_cast instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_unital_comm_semiring β] [topological_semiring β] : non_unital_comm_semiring C(α, β) := coe_injective.non_unital_comm_semiring _ coe_zero coe_add coe_mul coe_nsmul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_semiring β] [topological_semiring β] : comm_semiring C(α, β) := coe_injective.comm_semiring _ coe_zero coe_one coe_add coe_mul coe_nsmul coe_pow coe_nat_cast instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [non_unital_comm_ring β] [topological_ring β] : non_unital_comm_ring C(α, β) := coe_injective.non_unital_comm_ring _ coe_zero coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul instance {α : Type*} {β : Type*} [topological_space α] [topological_space β] [comm_ring β] [topological_ring β] : comm_ring C(α, β) := coe_injective.comm_ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub coe_nsmul coe_zsmul coe_pow coe_nat_cast coe_int_cast /-- Composition on the left by a (continuous) homomorphism of topological semirings, as a `ring_hom`. Similar to `ring_hom.comp_left`. -/ @[simps] protected def _root_.ring_hom.comp_left_continuous (α : Type*) {β : Type*} {γ : Type*} [topological_space α] [topological_space β] [semiring β] [topological_semiring β] [topological_space γ] [semiring γ] [topological_semiring γ] (g : β →+* γ) (hg : continuous g) : C(α, β) →+* C(α, γ) := { .. g.to_monoid_hom.comp_left_continuous α hg, .. g.to_add_monoid_hom.comp_left_continuous α hg } /-- Coercion to a function as a `ring_hom`. -/ @[simps] def coe_fn_ring_hom {α : Type*} {β : Type*} [topological_space α] [topological_space β] [ring β] [topological_ring β] : C(α, β) →+* (α → β) := { to_fun := coe_fn, ..(coe_fn_monoid_hom : C(α, β) →* _), ..(coe_fn_add_monoid_hom : C(α, β) →+ _) } end continuous_map end ring_structure local attribute [ext] subtype.eq section module_structure /-! ### Semiodule stucture In this section we show that continuous functions valued in a topological module `M` over a topological semiring `R` inherit the structure of a module. -/ section subtype variables (α : Type*) [topological_space α] variables (R : Type*) [semiring R] variables (M : Type*) [topological_space M] [add_comm_group M] variables [module R M] [has_continuous_const_smul R M] [topological_add_group M] /-- The `R`-submodule of continuous maps `α → M`. -/ def continuous_submodule : submodule R (α → M) := { carrier := { f : α → M | continuous f }, smul_mem' := λ c f hf, hf.const_smul c, ..continuous_add_subgroup α M } end subtype namespace continuous_map variables {α β : Type*} [topological_space α] [topological_space β] {R R₁ : Type*} {M : Type*} [topological_space M] {M₂ : Type*} [topological_space M₂] @[to_additive continuous_map.has_vadd] instance [has_smul R M] [has_continuous_const_smul R M] : has_smul R C(α, M) := ⟨λ r f, ⟨r • f, f.continuous.const_smul r⟩⟩ @[to_additive] instance [locally_compact_space α] [has_smul R M] [has_continuous_const_smul R M] : has_continuous_const_smul R C(α, M) := ⟨λ γ, continuous_of_continuous_uncurry _ (continuous_eval'.const_smul γ)⟩ @[to_additive] instance [locally_compact_space α] [topological_space R] [has_smul R M] [has_continuous_smul R M] : has_continuous_smul R C(α, M) := ⟨begin refine continuous_of_continuous_uncurry _ _, have h : continuous (λ x : (R × C(α, M)) × α, x.fst.snd x.snd) := continuous_eval'.comp (continuous_snd.prod_map continuous_id), exact (continuous_fst.comp continuous_fst).smul h, end⟩ @[simp, to_additive, norm_cast] lemma coe_smul [has_smul R M] [has_continuous_const_smul R M] (c : R) (f : C(α, M)) : ⇑(c • f) = c • f := rfl @[to_additive] lemma smul_apply [has_smul R M] [has_continuous_const_smul R M] (c : R) (f : C(α, M)) (a : α) : (c • f) a = c • (f a) := rfl @[simp, to_additive] lemma smul_comp [has_smul R M] [has_continuous_const_smul R M] (r : R) (f : C(β, M)) (g : C(α, β)) : (r • f).comp g = r • (f.comp g) := rfl @[to_additive] instance [has_smul R M] [has_continuous_const_smul R M] [has_smul R₁ M] [has_continuous_const_smul R₁ M] [smul_comm_class R R₁ M] : smul_comm_class R R₁ C(α, M) := { smul_comm := λ _ _ _, ext $ λ _, smul_comm _ _ _ } instance [has_smul R M] [has_continuous_const_smul R M] [has_smul R₁ M] [has_continuous_const_smul R₁ M] [has_smul R R₁] [is_scalar_tower R R₁ M] : is_scalar_tower R R₁ C(α, M) := { smul_assoc := λ _ _ _, ext $ λ _, smul_assoc _ _ _ } instance [has_smul R M] [has_smul Rᵐᵒᵖ M] [has_continuous_const_smul R M] [is_central_scalar R M] : is_central_scalar R C(α, M) := { op_smul_eq_smul := λ _ _, ext $ λ _, op_smul_eq_smul _ _ } instance [monoid R] [mul_action R M] [has_continuous_const_smul R M] : mul_action R C(α, M) := function.injective.mul_action _ coe_injective coe_smul instance [monoid R] [add_monoid M] [distrib_mul_action R M] [has_continuous_add M] [has_continuous_const_smul R M] : distrib_mul_action R C(α, M) := function.injective.distrib_mul_action coe_fn_add_monoid_hom coe_injective coe_smul variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] variables [has_continuous_add M] [module R M] [has_continuous_const_smul R M] variables [has_continuous_add M₂] [module R M₂] [has_continuous_const_smul R M₂] instance module : module R C(α, M) := function.injective.module R coe_fn_add_monoid_hom coe_injective coe_smul variables (R) /-- Composition on the left by a continuous linear map, as a `linear_map`. Similar to `linear_map.comp_left`. -/ @[simps] protected def _root_.continuous_linear_map.comp_left_continuous (α : Type*) [topological_space α] (g : M →L[R] M₂) : C(α, M) →ₗ[R] C(α, M₂) := { map_smul' := λ c f, ext $ λ x, g.map_smul' c _, .. g.to_linear_map.to_add_monoid_hom.comp_left_continuous α g.continuous } /-- Coercion to a function as a `linear_map`. -/ @[simps] def coe_fn_linear_map : C(α, M) →ₗ[R] (α → M) := { to_fun := coe_fn, map_smul' := coe_smul, ..(coe_fn_add_monoid_hom : C(α, M) →+ _) } end continuous_map end module_structure section algebra_structure /-! ### Algebra structure In this section we show that continuous functions valued in a topological algebra `A` over a ring `R` inherit the structure of an algebra. Note that the hypothesis that `A` is a topological algebra is obtained by requiring that `A` be both a `has_continuous_smul` and a `topological_semiring`.-/ section subtype variables {α : Type*} [topological_space α] {R : Type*} [comm_semiring R] {A : Type*} [topological_space A] [semiring A] [algebra R A] [topological_semiring A] /-- The `R`-subalgebra of continuous maps `α → A`. -/ def continuous_subalgebra : subalgebra R (α → A) := { carrier := { f : α → A | continuous f }, algebra_map_mem' := λ r, (continuous_const : continuous $ λ (x : α), algebra_map R A r), ..continuous_subsemiring α A } end subtype section continuous_map variables {α : Type*} [topological_space α] {R : Type*} [comm_semiring R] {A : Type*} [topological_space A] [semiring A] [algebra R A] [topological_semiring A] {A₂ : Type*} [topological_space A₂] [semiring A₂] [algebra R A₂] [topological_semiring A₂] /-- Continuous constant functions as a `ring_hom`. -/ def continuous_map.C : R →+* C(α, A) := { to_fun := λ c : R, ⟨λ x: α, ((algebra_map R A) c), continuous_const⟩, map_one' := by ext x; exact (algebra_map R A).map_one, map_mul' := λ c₁ c₂, by ext x; exact (algebra_map R A).map_mul _ _, map_zero' := by ext x; exact (algebra_map R A).map_zero, map_add' := λ c₁ c₂, by ext x; exact (algebra_map R A).map_add _ _ } @[simp] lemma continuous_map.C_apply (r : R) (a : α) : continuous_map.C r a = algebra_map R A r := rfl variables [has_continuous_const_smul R A] [has_continuous_const_smul R A₂] instance continuous_map.algebra : algebra R C(α, A) := { to_ring_hom := continuous_map.C, commutes' := λ c f, by ext x; exact algebra.commutes' _ _, smul_def' := λ c f, by ext x; exact algebra.smul_def' _ _, } variables (R) /-- Composition on the left by a (continuous) homomorphism of topological `R`-algebras, as an `alg_hom`. Similar to `alg_hom.comp_left`. -/ @[simps] protected def alg_hom.comp_left_continuous {α : Type*} [topological_space α] (g : A →ₐ[R] A₂) (hg : continuous g) : C(α, A) →ₐ[R] C(α, A₂) := { commutes' := λ c, continuous_map.ext $ λ _, g.commutes' _, .. g.to_ring_hom.comp_left_continuous α hg } /-- Coercion to a function as an `alg_hom`. -/ @[simps] def continuous_map.coe_fn_alg_hom : C(α, A) →ₐ[R] (α → A) := { to_fun := coe_fn, commutes' := λ r, rfl, -- `..(continuous_map.coe_fn_ring_hom : C(α, A) →+* _)` times out for some reason map_zero' := continuous_map.coe_zero, map_one' := continuous_map.coe_one, map_add' := continuous_map.coe_add, map_mul' := continuous_map.coe_mul } variables {R} /-- A version of `separates_points` for subalgebras of the continuous functions, used for stating the Stone-Weierstrass theorem. -/ abbreviation subalgebra.separates_points (s : subalgebra R C(α, A)) : Prop := set.separates_points ((λ f : C(α, A), (f : α → A)) '' (s : set C(α, A))) lemma subalgebra.separates_points_monotone : monotone (λ s : subalgebra R C(α, A), s.separates_points) := λ s s' r h x y n, begin obtain ⟨f, m, w⟩ := h n, rcases m with ⟨f, ⟨m, rfl⟩⟩, exact ⟨_, ⟨f, ⟨r m, rfl⟩⟩, w⟩, end @[simp] lemma algebra_map_apply (k : R) (a : α) : algebra_map R C(α, A) k a = k • 1 := by { rw algebra.algebra_map_eq_smul_one, refl, } variables {𝕜 : Type*} [topological_space 𝕜] /-- A set of continuous maps "separates points strongly" if for each pair of distinct points there is a function with specified values on them. We give a slightly unusual formulation, where the specified values are given by some function `v`, and we ask `f x = v x ∧ f y = v y`. This avoids needing a hypothesis `x ≠ y`. In fact, this definition would work perfectly well for a set of non-continuous functions, but as the only current use case is in the Stone-Weierstrass theorem, writing it this way avoids having to deal with casts inside the set. (This may need to change if we do Stone-Weierstrass on non-compact spaces, where the functions would be continuous functions vanishing at infinity.) -/ def set.separates_points_strongly (s : set C(α, 𝕜)) : Prop := ∀ (v : α → 𝕜) (x y : α), ∃ f : s, (f x : 𝕜) = v x ∧ f y = v y variables [field 𝕜] [topological_ring 𝕜] /-- Working in continuous functions into a topological field, a subalgebra of functions that separates points also separates points strongly. By the hypothesis, we can find a function `f` so `f x ≠ f y`. By an affine transformation in the field we can arrange so that `f x = a` and `f x = b`. -/ lemma subalgebra.separates_points.strongly {s : subalgebra 𝕜 C(α, 𝕜)} (h : s.separates_points) : (s : set C(α, 𝕜)).separates_points_strongly := λ v x y, begin by_cases n : x = y, { subst n, use ((v x) • 1 : C(α, 𝕜)), { apply s.smul_mem, apply s.one_mem, }, { simp [coe_fn_coe_base'] }, }, obtain ⟨f, ⟨f, ⟨m, rfl⟩⟩, w⟩ := h n, replace w : f x - f y ≠ 0 := sub_ne_zero_of_ne w, let a := v x, let b := v y, let f' := ((b - a) * (f x - f y)⁻¹) • (continuous_map.C (f x) - f) + continuous_map.C a, refine ⟨⟨f', _⟩, _, _⟩, { simp only [f', set_like.mem_coe, subalgebra.mem_to_submodule], -- TODO should there be a tactic for this? -- We could add an attribute `@[subobject_mem]`, and a tactic -- ``def subobject_mem := `[solve_by_elim with subobject_mem { max_depth := 10 }]`` solve_by_elim [subalgebra.add_mem, subalgebra.smul_mem, subalgebra.sub_mem, subalgebra.algebra_map_mem] { max_depth := 6 }, }, { simp [f', coe_fn_coe_base'], }, { simp [f', coe_fn_coe_base', inv_mul_cancel_right₀ w], }, end end continuous_map -- TODO[gh-6025]: make this an instance once safe to do so lemma continuous_map.subsingleton_subalgebra (α : Type*) [topological_space α] (R : Type*) [comm_semiring R] [topological_space R] [topological_semiring R] [subsingleton α] : subsingleton (subalgebra R C(α, R)) := begin fsplit, intros s₁ s₂, by_cases n : nonempty α, { obtain ⟨x⟩ := n, ext f, have h : f = algebra_map R C(α, R) (f x), { ext x', simp only [mul_one, algebra.id.smul_eq_mul, algebra_map_apply], congr, }, rw h, simp only [subalgebra.algebra_map_mem], }, { ext f, have h : f = 0, { ext x', exact false.elim (n ⟨x'⟩), }, subst h, simp only [subalgebra.zero_mem], }, end end algebra_structure section module_over_continuous_functions /-! ### Structure as module over scalar functions If `M` is a module over `R`, then we show that the space of continuous functions from `α` to `M` is naturally a module over the ring of continuous functions from `α` to `R`. -/ namespace continuous_map instance has_smul' {α : Type*} [topological_space α] {R : Type*} [semiring R] [topological_space R] {M : Type*} [topological_space M] [add_comm_monoid M] [module R M] [has_continuous_smul R M] : has_smul C(α, R) C(α, M) := ⟨λ f g, ⟨λ x, (f x) • (g x), (continuous.smul f.2 g.2)⟩⟩ instance module' {α : Type*} [topological_space α] (R : Type*) [ring R] [topological_space R] [topological_ring R] (M : Type*) [topological_space M] [add_comm_monoid M] [has_continuous_add M] [module R M] [has_continuous_smul R M] : module C(α, R) C(α, M) := { smul := (•), smul_add := λ c f g, by ext x; exact smul_add (c x) (f x) (g x), add_smul := λ c₁ c₂ f, by ext x; exact add_smul (c₁ x) (c₂ x) (f x), mul_smul := λ c₁ c₂ f, by ext x; exact mul_smul (c₁ x) (c₂ x) (f x), one_smul := λ f, by ext x; exact one_smul R (f x), zero_smul := λ f, by ext x; exact zero_smul _ _, smul_zero := λ r, by ext x; exact smul_zero _, } end continuous_map end module_over_continuous_functions /-! We now provide formulas for `f ⊓ g` and `f ⊔ g`, where `f g : C(α, β)`, in terms of `continuous_map.abs`. -/ section variables {R : Type*} [linear_ordered_field R] -- TODO: -- This lemma (and the next) could go all the way back in `algebra.order.field`, -- except that it is tedious to prove without tactics. -- Rather than stranding it at some intermediate location, -- it's here, immediately prior to the point of use. lemma min_eq_half_add_sub_abs_sub {x y : R} : min x y = 2⁻¹ * (x + y - |x - y|) := by cases le_total x y with h h; field_simp [h, abs_of_nonneg, abs_of_nonpos, mul_two]; abel lemma max_eq_half_add_add_abs_sub {x y : R} : max x y = 2⁻¹ * (x + y + |x - y|) := by cases le_total x y with h h; field_simp [h, abs_of_nonneg, abs_of_nonpos, mul_two]; abel end namespace continuous_map section lattice variables {α : Type*} [topological_space α] variables {β : Type*} [linear_ordered_field β] [topological_space β] [order_topology β] [topological_ring β] lemma inf_eq (f g : C(α, β)) : f ⊓ g = (2⁻¹ : β) • (f + g - |f - g|) := ext (λ x, by simpa using min_eq_half_add_sub_abs_sub) -- Not sure why this is grosser than `inf_eq`: lemma sup_eq (f g : C(α, β)) : f ⊔ g = (2⁻¹ : β) • (f + g + |f - g|) := ext (λ x, by simpa [mul_add] using @max_eq_half_add_add_abs_sub _ _ (f x) (g x)) end lattice /-! ### Star structure If `β` has a continuous star operation, we put a star structure on `C(α, β)` by using the star operation pointwise. If `β` is a ⋆-ring, then `C(α, β)` inherits a ⋆-ring structure. If `β` is a ⋆-ring and a ⋆-module over `R`, then the space of continuous functions from `α` to `β` is a ⋆-module over `R`. -/ section star_structure variables {R α β : Type*} variables [topological_space α] [topological_space β] section has_star variables [has_star β] [has_continuous_star β] instance : has_star C(α, β) := { star := λ f, star_continuous_map.comp f } @[simp] lemma coe_star (f : C(α, β)) : ⇑(star f) = star f := rfl @[simp] lemma star_apply (f : C(α, β)) (x : α) : star f x = star (f x) := rfl end has_star instance [has_involutive_star β] [has_continuous_star β] : has_involutive_star C(α, β) := { star_involutive := λ f, ext $ λ x, star_star _ } instance [add_monoid β] [has_continuous_add β] [star_add_monoid β] [has_continuous_star β] : star_add_monoid C(α, β) := { star_add := λ f g, ext $ λ x, star_add _ _ } instance [semigroup β] [has_continuous_mul β] [star_semigroup β] [has_continuous_star β] : star_semigroup C(α, β) := { star_mul := λ f g, ext $ λ x, star_mul _ _ } instance [non_unital_semiring β] [topological_semiring β] [star_ring β] [has_continuous_star β] : star_ring C(α, β) := { ..continuous_map.star_add_monoid } instance [has_star R] [has_star β] [has_smul R β] [star_module R β] [has_continuous_star β] [has_continuous_const_smul R β] : star_module R C(α, β) := { star_smul := λ k f, ext $ λ x, star_smul _ _ } end star_structure end continuous_map