/- Copyright (c) 2022 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import topology.continuous_function.basic /-! # Cocompact continuous maps The type of *cocompact continuous maps* are those which tend to the cocompact filter on the codomain along the cocompact filter on the domain. When the domain and codomain are Hausdorff, this is equivalent to many other conditions, including that preimages of compact sets are compact. -/ universes u v w open filter set /-! ### Cocompact continuous maps -/ /-- A *cocompact continuous map* is a continuous function between topological spaces which tends to the cocompact filter along the cocompact filter. Functions for which preimages of compact sets are compact always satisfy this property, and the converse holds for cocompact continuous maps when the codomain is Hausdorff (see `cocompact_map.tendsto_of_forall_preimage` and `cocompact_map.compact_preimage`) -/ structure cocompact_map (α : Type u) (β : Type v) [topological_space α] [topological_space β] extends continuous_map α β : Type (max u v) := (cocompact_tendsto' : tendsto to_fun (cocompact α) (cocompact β)) /-- `cocompact_map_class F α β` states that `F` is a type of cocompact continuous maps. You should also extend this typeclass when you extend `cocompact_map`. -/ class cocompact_map_class (F : Type*) (α β : out_param $ Type*) [topological_space α] [topological_space β] extends continuous_map_class F α β := (cocompact_tendsto (f : F) : tendsto f (cocompact α) (cocompact β)) namespace cocompact_map_class variables {F α β : Type*} [topological_space α] [topological_space β] [cocompact_map_class F α β] instance : has_coe_t F (cocompact_map α β) := ⟨λ f, ⟨f, cocompact_tendsto f⟩⟩ end cocompact_map_class export cocompact_map_class (cocompact_tendsto) namespace cocompact_map section basics variables {α β γ δ : Type*} [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] instance : cocompact_map_class (cocompact_map α β) α β := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' }, map_continuous := λ f, f.continuous_to_fun, cocompact_tendsto := λ f, f.cocompact_tendsto' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. -/ instance : has_coe_to_fun (cocompact_map α β) (λ _, α → β) := fun_like.has_coe_to_fun @[simp] lemma coe_to_continuous_fun {f : cocompact_map α β} : (f.to_continuous_map : α → β) = f := rfl @[ext] lemma ext {f g : cocompact_map α β} (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h /-- Copy of a `cocompact_map` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : cocompact_map α β) (f' : α → β) (h : f' = f) : cocompact_map α β := { to_fun := f', continuous_to_fun := by {rw h, exact f.continuous_to_fun}, cocompact_tendsto' := by { simp_rw h, exact f.cocompact_tendsto' } } @[simp] lemma coe_mk (f : C(α, β)) (h : tendsto f (cocompact α) (cocompact β)) : ⇑(⟨f, h⟩ : cocompact_map α β) = f := rfl section variable (α) /-- The identity as a cocompact continuous map. -/ protected def id : cocompact_map α α := ⟨continuous_map.id _, tendsto_id⟩ @[simp] lemma coe_id : ⇑(cocompact_map.id α) = id := rfl end instance : inhabited (cocompact_map α α) := ⟨cocompact_map.id α⟩ /-- The composition of cocompact continuous maps, as a cocompact continuous map. -/ def comp (f : cocompact_map β γ) (g : cocompact_map α β) : cocompact_map α γ := ⟨f.to_continuous_map.comp g, (cocompact_tendsto f).comp (cocompact_tendsto g)⟩ @[simp] lemma coe_comp (f : cocompact_map β γ) (g : cocompact_map α β) : ⇑(comp f g) = f ∘ g := rfl @[simp] lemma comp_apply (f : cocompact_map β γ) (g : cocompact_map α β) (a : α) : comp f g a = f (g a) := rfl @[simp] lemma comp_assoc (f : cocompact_map γ δ) (g : cocompact_map β γ) (h : cocompact_map α β) : (f.comp g).comp h = f.comp (g.comp h) := rfl @[simp] lemma id_comp (f : cocompact_map α β) : (cocompact_map.id _).comp f = f := ext $ λ _, rfl @[simp] lemma comp_id (f : cocompact_map α β) : f.comp (cocompact_map.id _) = f := ext $ λ _, rfl lemma tendsto_of_forall_preimage {f : α → β} (h : ∀ s, is_compact s → is_compact (f ⁻¹' s)) : tendsto f (cocompact α) (cocompact β) := λ s hs, match mem_cocompact.mp hs with ⟨t, ht, hts⟩ := mem_map.mpr (mem_cocompact.mpr ⟨f ⁻¹' t, h t ht, by simpa using preimage_mono hts⟩) end /-- If the codomain is Hausdorff, preimages of compact sets are compact under a cocompact continuous map. -/ lemma compact_preimage [t2_space β] (f : cocompact_map α β) ⦃s : set β⦄ (hs : is_compact s) : is_compact (f ⁻¹' s) := begin obtain ⟨t, ht, hts⟩ := mem_cocompact'.mp (by simpa only [preimage_image_preimage, preimage_compl] using mem_map.mp (cocompact_tendsto f $ mem_cocompact.mpr ⟨s, hs, compl_subset_compl.mpr (image_preimage_subset f _)⟩)), exact compact_of_is_closed_subset ht (hs.is_closed.preimage $ map_continuous f) (by simpa using hts), end end basics end cocompact_map