/- Copyright © 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Shing Tak Lam -/ import topology.algebra.order.proj_Icc import topology.continuous_function.basic /-! # Bundled continuous maps into orders, with order-compatible topology -/ variables {α : Type*} {β : Type*} {γ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] namespace continuous_map section variables [linear_ordered_add_comm_group β] [order_topology β] /-- The pointwise absolute value of a continuous function as a continuous function. -/ def abs (f : C(α, β)) : C(α, β) := { to_fun := λ x, |f x|, } @[priority 100] -- see Note [lower instance priority] instance : has_abs C(α, β) := ⟨λf, abs f⟩ @[simp] lemma abs_apply (f : C(α, β)) (x : α) : |f| x = |f x| := rfl end /-! We now set up the partial order and lattice structure (given by pointwise min and max) on continuous functions. -/ section lattice instance partial_order [partial_order β] : partial_order C(α, β) := partial_order.lift (λ f, f.to_fun) (by tidy) lemma le_def [partial_order β] {f g : C(α, β)} : f ≤ g ↔ ∀ a, f a ≤ g a := pi.le_def lemma lt_def [partial_order β] {f g : C(α, β)} : f < g ↔ (∀ a, f a ≤ g a) ∧ (∃ a, f a < g a) := pi.lt_def instance has_sup [linear_order β] [order_closed_topology β] : has_sup C(α, β) := { sup := λ f g, { to_fun := λ a, max (f a) (g a), } } @[simp, norm_cast] lemma sup_coe [linear_order β] [order_closed_topology β] (f g : C(α, β)) : ((f ⊔ g : C(α, β)) : α → β) = (f ⊔ g : α → β) := rfl @[simp] lemma sup_apply [linear_order β] [order_closed_topology β] (f g : C(α, β)) (a : α) : (f ⊔ g) a = max (f a) (g a) := rfl instance [linear_order β] [order_closed_topology β] : semilattice_sup C(α, β) := { le_sup_left := λ f g, le_def.mpr (by simp [le_refl]), le_sup_right := λ f g, le_def.mpr (by simp [le_refl]), sup_le := λ f₁ f₂ g w₁ w₂, le_def.mpr (λ a, by simp [le_def.mp w₁ a, le_def.mp w₂ a]), ..continuous_map.partial_order, ..continuous_map.has_sup, } instance has_inf [linear_order β] [order_closed_topology β] : has_inf C(α, β) := { inf := λ f g, { to_fun := λ a, min (f a) (g a), } } @[simp, norm_cast] lemma inf_coe [linear_order β] [order_closed_topology β] (f g : C(α, β)) : ((f ⊓ g : C(α, β)) : α → β) = (f ⊓ g : α → β) := rfl @[simp] lemma inf_apply [linear_order β] [order_closed_topology β] (f g : C(α, β)) (a : α) : (f ⊓ g) a = min (f a) (g a) := rfl instance [linear_order β] [order_closed_topology β] : semilattice_inf C(α, β) := { inf_le_left := λ f g, le_def.mpr (by simp [le_refl]), inf_le_right := λ f g, le_def.mpr (by simp [le_refl]), le_inf := λ f₁ f₂ g w₁ w₂, le_def.mpr (λ a, by simp [le_def.mp w₁ a, le_def.mp w₂ a]), ..continuous_map.partial_order, ..continuous_map.has_inf, } instance [linear_order β] [order_closed_topology β] : lattice C(α, β) := { ..continuous_map.semilattice_inf, ..continuous_map.semilattice_sup } -- TODO transfer this lattice structure to `bounded_continuous_function` section sup' variables [linear_order γ] [order_closed_topology γ] lemma sup'_apply {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) (b : β) : s.sup' H f b = s.sup' H (λ a, f a b) := finset.comp_sup'_eq_sup'_comp H (λ f : C(β, γ), f b) (λ i j, rfl) @[simp, norm_cast] lemma sup'_coe {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) : ((s.sup' H f : C(β, γ)) : ι → β) = s.sup' H (λ a, (f a : β → γ)) := by { ext, simp [sup'_apply], } end sup' section inf' variables [linear_order γ] [order_closed_topology γ] lemma inf'_apply {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) (b : β) : s.inf' H f b = s.inf' H (λ a, f a b) := @sup'_apply _ γᵒᵈ _ _ _ _ _ _ H f b @[simp, norm_cast] lemma inf'_coe {ι : Type*} {s : finset ι} (H : s.nonempty) (f : ι → C(β, γ)) : ((s.inf' H f : C(β, γ)) : ι → β) = s.inf' H (λ a, (f a : β → γ)) := @sup'_coe _ γᵒᵈ _ _ _ _ _ _ H f end inf' end lattice section extend variables [linear_order α] [order_topology α] {a b : α} (h : a ≤ b) /-- Extend a continuous function `f : C(set.Icc a b, β)` to a function `f : C(α, β)`. -/ def Icc_extend (f : C(set.Icc a b, β)) : C(α, β) := ⟨set.Icc_extend h f⟩ @[simp] lemma coe_Icc_extend (f : C(set.Icc a b, β)) : ((Icc_extend h f : C(α, β)) : α → β) = set.Icc_extend h f := rfl end extend end continuous_map