/- Copyright (c) 2022 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Patrick Massot -/ import topology.basic /-! # Neighborhoods of a set In this file we define the filter `𝓝ˢ s` or `nhds_set s` consisting of all neighborhoods of a set `s`. ## Main Properties There are a couple different notions equivalent to `s ∈ 𝓝ˢ t`: * `s ⊆ interior t` using `subset_interior_iff_mem_nhds_set` * `∀ (x : α), x ∈ t → s ∈ 𝓝 x` using `mem_nhds_set_iff_forall` * `∃ U : set α, is_open U ∧ t ⊆ U ∧ U ⊆ s` using `mem_nhds_set_iff_exists` Furthermore, we have the following results: * `monotone_nhds_set`: `𝓝ˢ` is monotone * In T₁-spaces, `𝓝ˢ`is strictly monotone and hence injective: `strict_mono_nhds_set`/`injective_nhds_set`. These results are in `topology.separation`. -/ open set filter open_locale topological_space variables {α β : Type*} [topological_space α] [topological_space β] {s t s₁ s₂ t₁ t₂ : set α} {x : α} /-- The filter of neighborhoods of a set in a topological space. -/ def nhds_set (s : set α) : filter α := Sup (nhds '' s) localized "notation `𝓝ˢ` := nhds_set" in topological_space lemma mem_nhds_set_iff_forall : s ∈ 𝓝ˢ t ↔ ∀ (x : α), x ∈ t → s ∈ 𝓝 x := by simp_rw [nhds_set, filter.mem_Sup, ball_image_iff] lemma subset_interior_iff_mem_nhds_set : s ⊆ interior t ↔ t ∈ 𝓝ˢ s := by simp_rw [mem_nhds_set_iff_forall, subset_interior_iff_nhds] lemma mem_nhds_set_iff_exists : s ∈ 𝓝ˢ t ↔ ∃ U : set α, is_open U ∧ t ⊆ U ∧ U ⊆ s := by { rw [← subset_interior_iff_mem_nhds_set, subset_interior_iff] } lemma has_basis_nhds_set (s : set α) : (𝓝ˢ s).has_basis (λ U, is_open U ∧ s ⊆ U) (λ U, U) := ⟨λ t, by simp [mem_nhds_set_iff_exists, and_assoc]⟩ lemma is_open.mem_nhds_set (hU : is_open s) : s ∈ 𝓝ˢ t ↔ t ⊆ s := by rw [← subset_interior_iff_mem_nhds_set, interior_eq_iff_open.mpr hU] @[simp] lemma nhds_set_singleton : 𝓝ˢ {x} = 𝓝 x := by { ext, rw [← subset_interior_iff_mem_nhds_set, ← mem_interior_iff_mem_nhds, singleton_subset_iff] } lemma mem_nhds_set_interior : s ∈ 𝓝ˢ (interior s) := subset_interior_iff_mem_nhds_set.mp subset.rfl lemma mem_nhds_set_empty : s ∈ 𝓝ˢ (∅ : set α) := subset_interior_iff_mem_nhds_set.mp $ empty_subset _ @[simp] lemma nhds_set_empty : 𝓝ˢ (∅ : set α) = ⊥ := by { ext, simp [mem_nhds_set_empty] } @[simp] lemma nhds_set_univ : 𝓝ˢ (univ : set α) = ⊤ := by { ext, rw [← subset_interior_iff_mem_nhds_set, univ_subset_iff, interior_eq_univ, mem_top] } lemma monotone_nhds_set : monotone (𝓝ˢ : set α → filter α) := λ s t hst, Sup_le_Sup $ image_subset _ hst @[simp] lemma nhds_set_union (s t : set α) : 𝓝ˢ (s ∪ t) = 𝓝ˢ s ⊔ 𝓝ˢ t := by simp only [nhds_set, image_union, Sup_union] lemma union_mem_nhds_set (h₁ : s₁ ∈ 𝓝ˢ t₁) (h₂ : s₂ ∈ 𝓝ˢ t₂) : s₁ ∪ s₂ ∈ 𝓝ˢ (t₁ ∪ t₂) := by { rw nhds_set_union, exact union_mem_sup h₁ h₂ } /-- Preimage of a set neighborhood of `t` under a continuous map `f` is a set neighborhood of `s` provided that `f` maps `s` to `t`. -/ lemma continuous.tendsto_nhds_set {f : α → β} {t : set β} (hf : continuous f) (hst : maps_to f s t) : tendsto f (𝓝ˢ s) (𝓝ˢ t) := ((has_basis_nhds_set s).tendsto_iff (has_basis_nhds_set t)).mpr $ λ U hU, ⟨f ⁻¹' U, ⟨hU.1.preimage hf, hst.mono subset.rfl hU.2⟩, λ x, id⟩