(* Title: Inductive definition of termination Author: Tobias Nipkow, 2001/2006 Maintainer: Tobias Nipkow *) theory PTermi imports PLang begin subsection\Termination\ inductive termi :: "com \ state \ bool" (infixl "\" 50) where Do[iff]: "f s \ {} \ Do f \ s" | Semi[intro!]: "\ c1 \ s0; \s1. s0 -c1\ s1 \ c2 \ s1 \ \ (c1;c2) \ s0" | IfTrue[intro,simp]: "\ b s; c1 \ s \ \ IF b THEN c1 ELSE c2 \ s" | IfFalse[intro,simp]: "\ \b s; c2 \ s \ \ IF b THEN c1 ELSE c2 \ s" | WhileFalse: "\b s \ WHILE b DO c \ s" | WhileTrue: "\ b s; c \ s; \t. s -c\ t \ WHILE b DO c \ t \ \ WHILE b DO c \ s" | "body \ s \ CALL \ s" | Local: "c \ f s \ LOCAL f;c;g \ s" lemma [iff]: "(Do f \ s) = (f s \ {})" apply(rule iffI) prefer 2 apply(best intro:termi.intros) apply(erule termi.cases) apply blast+ done lemma [iff]: "((c1;c2) \ s0) = (c1 \ s0 \ (\s1. s0 -c1\ s1 \ c2 \ s1))" apply(rule iffI) prefer 2 apply(best intro:termi.intros) apply(erule termi.cases) apply blast+ done lemma [iff]: "(IF b THEN c1 ELSE c2 \ s) = ((if b s then c1 else c2) \ s)" apply simp apply(rule conjI) apply(rule impI) apply(rule iffI) prefer 2 apply(blast intro:termi.intros) apply(erule termi.cases) apply blast+ apply(rule impI) apply(rule iffI) prefer 2 apply(blast intro:termi.intros) apply(erule termi.cases) apply blast+ done lemma [iff]: "(CALL \ s) = (body \ s)" by(fast elim: termi.cases intro:termi.intros) lemma [iff]: "(LOCAL f;c;g \ s) = (c \ f s)" by(fast elim: termi.cases intro:termi.intros) lemma termi_while_lemma[rule_format]: "w\fk \ (\k b c. fk = f k \ w = WHILE b DO c \ (\i. f i -c\ f(Suc i)) \ (\i. \b(f i)))" apply(erule termi.induct) apply simp_all apply blast apply blast done lemma termi_while: "\ (WHILE b DO c) \ f k; \i. f i -c\ f(Suc i) \ \ \i. \b(f i)" by(blast intro:termi_while_lemma) lemma wf_termi: "wf {(t,s). WHILE b DO c \ s \ b s \ s -c\ t}" apply(subst wf_iff_no_infinite_down_chain) apply(rule notI) apply clarsimp apply(insert termi_while) apply blast done end