(* Title: Inductive definition of Hoare logic Author: Tobias Nipkow, 2001/2006 Maintainer: Tobias Nipkow *) theory Hoare imports Lang begin subsection\Hoare logic for partial correctness\ text\We continue our semantic approach by modelling assertions just like boolean expressions, i.e.\ as functions:\ type_synonym assn = "state \ bool" text\Hoare triples are triples of the form \{P} c {Q}\, where the assertions \P\ and \Q\ are the so-called pre and postconditions. Such a triple is \emph{valid} (denoted by \\\) iff every (terminating) execution starting in a state satisfying \P\ ends up in a state satisfying \Q\:\ definition hoare_valid :: "assn \ com \ assn \ bool" ("\ {(1_)}/ (_)/ {(1_)}" 50) where "\ {P}c{Q} \ (\s t. s -c\ t \ P s \ Q t)" text\\noindent This notion of validity is called \emph{partial correctness} because it does not require termination of @{term c}. Provability in Hoare logic is indicated by \\\ and defined inductively:\ inductive hoare :: "assn \ com \ assn \ bool" ("\ ({(1_)}/ (_)/ {(1_)})" 50) where (*<*)Do:(*>*)"\ {\s. \t \ f s. P t} Do f {P}" | (*<*)Semi:(*>*)"\ \ {P}c1{Q}; \ {Q}c2{R} \ \ \ {P} c1;c2 {R}" | (*<*)If:(*>*)"\ \ {\s. P s \ b s} c1 {Q}; \ {\s. P s \ \b s} c2 {Q} \ \ \ {P} IF b THEN c1 ELSE c2 {Q}" | (*<*)While:(*>*)"\ {\s. P s \ b s} c {P} \ \ {P} WHILE b DO c {\s. P s \ \b s}" | (*<*)Conseq:(*>*)"\ \s. P' s \ P s; \ {P}c{Q}; \s. Q s \ Q' s \ \ \ {P'}c{Q'}" | (*<*)Local:(*>*) "\ \s. P s \ P' s (f s); \s. \ {P' s} c {Q \ (g s)} \ \ \ {P} LOCAL f;c;g {Q}" text\Soundness is proved by induction on the derivation of @{prop"\ {P} c {Q}"}:\ theorem hoare_sound: "\ {P}c{Q} \ \ {P}c{Q}" apply(unfold hoare_valid_def) apply(erule hoare.induct) apply blast apply blast apply clarsimp apply clarify apply(drule while_rule) prefer 3 apply (assumption, assumption, blast) apply blast apply clarify apply(erule allE) apply clarify apply(erule allE) apply(erule allE) apply(erule impE) apply assumption apply simp apply(erule mp) apply(simp) done text\ Completeness is not quite as straightforward, but still easy. The proof is best explained in terms of the \emph{weakest precondition}:\ definition wp :: "com \ assn \ assn" where "wp c Q = (\s. \t. s -c\ t \ Q t)" text\\noindent Dijkstra calls this the weakest \emph{liberal} precondition to emphasize that it corresponds to partial correctness. We use ``weakest precondition'' all the time and let the context determine if we talk about partial or total correctness --- the latter is introduced further below. The following lemmas about @{term wp} are easily derived: \ lemma [simp]: "wp (Do f) Q = (\s. \t \ f s. Q(t))" apply(unfold wp_def) apply(rule ext) apply blast done lemma [simp]: "wp (c\<^sub>1;c\<^sub>2) R = wp c\<^sub>1 (wp c\<^sub>2 R)" apply(unfold wp_def) apply(rule ext) apply blast done lemma [simp]: "wp (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q = (\s. wp (if b s then c\<^sub>1 else c\<^sub>2) Q s)" apply(unfold wp_def) apply(rule ext) apply auto done lemma wp_while: "wp (WHILE b DO c) Q = (\s. if b s then wp (c;WHILE b DO c) Q s else Q s)" apply(rule ext) apply(unfold wp_def) apply auto apply(blast intro:exec.intros) apply(simp add:unfold_while) apply(blast intro:exec.intros) apply(simp add:unfold_while) done lemma [simp]: "wp (LOCAL f;c;g) Q = (\s. wp c (Q o (g s)) (f s))" apply(unfold wp_def) apply(rule ext) apply auto done lemma strengthen_pre: "\ \s. P' s \ P s; \ {P}c{Q} \ \ \ {P'}c{Q}" by(erule hoare.Conseq, assumption, blast) lemma weaken_post: "\ \ {P}c{Q}; \s. Q s \ Q' s \ \ \ {P}c{Q'}" apply(rule hoare.Conseq) apply(fast, assumption, assumption) done text\By induction on @{term c} one can easily prove\ lemma wp_is_pre[rule_format]: "\ {wp c Q} c {Q}" apply (induct c arbitrary: Q) apply simp_all apply(blast intro:hoare.Do hoare.Conseq) apply(blast intro:hoare.Semi hoare.Conseq) apply(blast intro:hoare.If hoare.Conseq) apply(rule weaken_post) apply(rule hoare.While) apply(rule strengthen_pre) prefer 2 apply blast apply(clarify) apply(drule fun_eq_iff[THEN iffD1, OF wp_while, THEN spec, THEN iffD1]) apply simp apply(clarify) apply(drule fun_eq_iff[THEN iffD1, OF wp_while, THEN spec, THEN iffD1]) apply(simp split:if_split_asm) apply(fast intro!: hoare.Local) done text\\noindent from which completeness follows more or less directly via the rule of consequence:\ theorem hoare_relative_complete: "\ {P}c{Q} \ \ {P}c{Q}" apply (rule strengthen_pre[OF _ wp_is_pre]) apply(unfold hoare_valid_def wp_def) apply blast done end