(* Title: Executable multivariate polynomials Author: Christian Sternagel René Thiemann Maintainer: Christian Sternagel and René Thiemann License: LGPL *) (* Copyright 2010 Christian Sternagel and René Thiemann This file is part of IsaFoR/CeTA. IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with IsaFoR/CeTA. If not, see . *) section \Strongly Normalizing Orders\ theory SN_Orders imports Abstract_Rewriting begin text \ We define several classes of orders which are used to build ordered semirings. Note that we do not use Isabelle's preorders since the condition $x > y = x \geq y \wedge y \not\geq x$ is sometimes not applicable. E.g., for $\delta$-orders over the rationals we have $0.2 \geq 0.1 \wedge 0.1 \not\geq 0.2$, but $0.2 >_\delta 0.1$ does not hold if $\delta$ is larger than $0.1$. \ class non_strict_order = ord + assumes ge_refl: "x \ (x :: 'a)" and ge_trans[trans]: "\x \ y; (y :: 'a) \ z\ \ x \ z" and max_comm: "max x y = max y x" and max_ge_x[intro]: "max x y \ x" and max_id: "x \ y \ max x y = x" and max_mono: "x \ y \ max z x \ max z y" begin lemma max_ge_y[intro]: "max x y \ y" unfolding max_comm[of x y] .. lemma max_mono2: "x \ y \ max x z \ max y z" unfolding max_comm[of _ z] by (rule max_mono) end class ordered_ab_semigroup = non_strict_order + ab_semigroup_add + monoid_add + assumes plus_left_mono: "x \ y \ x + z \ y + z" lemma plus_right_mono: "y \ (z :: 'a :: ordered_ab_semigroup) \ x + y \ x + z" by (simp add: add.commute[of x], rule plus_left_mono, auto) class ordered_semiring_0 = ordered_ab_semigroup + semiring_0 + assumes times_left_mono: "z \ 0 \ x \ y \ x * z \ y * z" and times_right_mono: "x \ 0 \ y \ z \ x * y \ x * z" and times_left_anti_mono: "x \ y \ 0 \ z \ y * z \ x * z" class ordered_semiring_1 = ordered_semiring_0 + semiring_1 + assumes one_ge_zero: "1 \ 0" text \ We do not use a class to define order-pairs of a strict and a weak-order since often we have parametric strict orders, e.g. on rational numbers there are several orders $>$ where $x > y = x \geq y + \delta$ for some parameter $\delta$ \ locale order_pair = fixes gt :: "'a :: {non_strict_order,zero} \ 'a \ bool" (infix "\" 50) and default :: "'a" assumes compat[trans]: "\x \ y; y \ z\ \ x \ z" and compat2[trans]: "\x \ y; y \ z\ \ x \ z" and gt_imp_ge: "x \ y \ x \ y" and default_ge_zero: "default \ 0" begin lemma gt_trans[trans]: "\x \ y; y \ z\ \ x \ z" by (rule compat[OF gt_imp_ge]) end locale one_mono_ordered_semiring_1 = order_pair gt for gt :: "'a :: ordered_semiring_1 \ 'a \ bool" (infix "\" 50) + assumes plus_gt_left_mono: "x \ y \ x + z \ y + z" and default_gt_zero: "default \ 0" begin lemma plus_gt_right_mono: "x \ y \ a + x \ a + y" unfolding add.commute[of a] by (rule plus_gt_left_mono) lemma plus_gt_both_mono: "x \ y \ a \ b \ x + a \ y + b" by (rule gt_trans[OF plus_gt_left_mono plus_gt_right_mono]) end locale SN_one_mono_ordered_semiring_1 = one_mono_ordered_semiring_1 + order_pair + assumes SN: "SN {(x,y) . y \ 0 \ x \ y}" locale SN_strict_mono_ordered_semiring_1 = SN_one_mono_ordered_semiring_1 + fixes mono :: "'a :: ordered_semiring_1 \ bool" assumes mono: "\mono x; y \ z; x \ 0\ \ x * y \ x * z" locale both_mono_ordered_semiring_1 = order_pair gt for gt :: "'a :: ordered_semiring_1 \ 'a \ bool" (infix "\" 50) + fixes arc_pos :: "'a \ bool" assumes plus_gt_both_mono: "\x \ y; z \ u\ \ x + z \ y + u" and times_gt_left_mono: "x \ y \ x * z \ y * z" and times_gt_right_mono: "y \ z \ x * y \ x * z" and zero_leastI: "x \ 0" and zero_leastII: "0 \ x \ x = 0" and zero_leastIII: "(x :: 'a) \ 0" and arc_pos_one: "arc_pos (1 :: 'a)" and arc_pos_default: "arc_pos default" and arc_pos_zero: "\ arc_pos 0" and arc_pos_plus: "arc_pos x \ arc_pos (x + y)" and arc_pos_mult: "\arc_pos x; arc_pos y\ \ arc_pos (x * y)" and not_all_ge: "\ c d. arc_pos d \ \ e. e \ 0 \ arc_pos e \ \ (c \ d * e)" begin lemma max0_id: "max 0 (x :: 'a) = x" unfolding max_comm[of 0] by (rule max_id[OF zero_leastIII]) end locale SN_both_mono_ordered_semiring_1 = both_mono_ordered_semiring_1 + assumes SN: "SN {(x,y) . arc_pos y \ x \ y}" locale weak_SN_strict_mono_ordered_semiring_1 = fixes weak_gt :: "'a :: ordered_semiring_1 \ 'a \ bool" and default :: "'a" and mono :: "'a \ bool" assumes weak_gt_mono: "\ x y. (x,y) \ set xys \ weak_gt x y \ \ gt. SN_strict_mono_ordered_semiring_1 default gt mono \ (\ x y. (x,y) \ set xys \ gt x y)" locale weak_SN_both_mono_ordered_semiring_1 = fixes weak_gt :: "'a :: ordered_semiring_1 \ 'a \ bool" and default :: "'a" and arc_pos :: "'a \ bool" assumes weak_gt_both_mono: "\ x y. (x,y) \ set xys \ weak_gt x y \ \ gt. SN_both_mono_ordered_semiring_1 default gt arc_pos \ (\ x y. (x,y) \ set xys \ gt x y)" class poly_carrier = ordered_semiring_1 + comm_semiring_1 locale poly_order_carrier = SN_one_mono_ordered_semiring_1 default gt for default :: "'a :: poly_carrier" and gt (infix "\" 50) + fixes power_mono :: "bool" and discrete :: "bool" assumes times_gt_mono: "\y \ z; x \ 1\ \ y * x \ z * x" and power_mono: "power_mono \ x \ y \ y \ 0 \ n \ 1 \ x ^ n \ y ^ n" and discrete: "discrete \ x \ y \ \ k. x = (((+) 1)^^k) y" class large_ordered_semiring_1 = poly_carrier + assumes ex_large_of_nat: "\ x. of_nat x \ y" context ordered_semiring_1 begin lemma pow_mono: assumes ab: "a \ b" and b: "b \ 0" shows "a ^ n \ b ^ n \ b ^ n \ 0" proof (induct n) case 0 show ?case by (auto simp: ge_refl one_ge_zero) next case (Suc n) hence abn: "a ^ n \ b ^ n" and bn: "b ^ n \ 0" by auto have bsn: "b ^ Suc n \ 0" unfolding power_Suc using times_left_mono[OF bn b] by auto have "a ^ Suc n = a * a ^ n" unfolding power_Suc by simp also have "... \ b * a ^ n" by (rule times_left_mono[OF ge_trans[OF abn bn] ab]) also have "b * a ^ n \ b * b ^ n" by (rule times_right_mono[OF b abn]) finally show ?case using bsn unfolding power_Suc by simp qed lemma pow_ge_zero[intro]: assumes a: "a \ (0 :: 'a)" shows "a ^ n \ 0" proof (induct n) case 0 from one_ge_zero show ?case by simp next case (Suc n) show ?case using times_left_mono[OF Suc a] by simp qed end lemma of_nat_ge_zero[intro,simp]: "of_nat n \ (0 :: 'a :: ordered_semiring_1)" proof (induct n) case 0 show ?case by (simp add: ge_refl) next case (Suc n) from plus_right_mono[OF Suc, of 1] have "of_nat (Suc n) \ (1 :: 'a)" by simp also have "(1 :: 'a) \ 0" using one_ge_zero . finally show ?case . qed lemma mult_ge_zero[intro]: "(a :: 'a :: ordered_semiring_1) \ 0 \ b \ 0 \ a * b \ 0" using times_left_mono[of b 0 a] by auto lemma pow_mono_one: assumes a: "a \ (1 :: 'a :: ordered_semiring_1)" shows "a ^ n \ 1" proof (induct n) case (Suc n) show ?case unfolding power_Suc using ge_trans[OF times_right_mono[OF ge_trans[OF a one_ge_zero] Suc], of 1] a by (auto simp: field_simps) qed (auto simp: ge_refl) lemma pow_mono_exp: assumes a: "a \ (1 :: 'a :: ordered_semiring_1)" shows "n \ m \ a ^ n \ a ^ m" proof (induct m arbitrary: n) case 0 show ?case using pow_mono_one[OF a] by auto next case (Suc m nn) then obtain n where nn: "nn = Suc n" by (cases nn, auto) note Suc = Suc[unfolded nn] hence rec: "a ^ n \ a ^ m" by auto show ?case unfolding nn power_Suc by (rule times_right_mono[OF ge_trans[OF a one_ge_zero] rec]) qed lemma mult_ge_one[intro]: assumes a: "(a :: 'a :: ordered_semiring_1) \ 1" and b: "b \ 1" shows "a * b \ 1" proof - from ge_trans[OF b one_ge_zero] have b0: "b \ 0" . from times_left_mono[OF b0 a] have "a * b \ b" by simp from ge_trans[OF this b] show ?thesis . qed lemma sum_list_ge_mono: fixes as :: "('a :: ordered_semiring_0) list" assumes "length as = length bs" and "\ i. i < length bs \ as ! i \ bs ! i" shows "sum_list as \ sum_list bs" using assms proof (induct as arbitrary: bs) case (Nil bs) from Nil(1) show ?case by (simp add: ge_refl) next case (Cons a as bbs) from Cons(2) obtain b bs where bbs: "bbs = b # bs" and len: "length as = length bs" by (cases bbs, auto) note ge = Cons(3)[unfolded bbs] { fix i assume "i < length bs" hence "Suc i < length (b # bs)" by simp from ge[OF this] have "as ! i \ bs ! i" by simp } from Cons(1)[OF len this] have IH: "sum_list as \ sum_list bs" . from ge[of 0] have ab: "a \ b" by simp from ge_trans[OF plus_left_mono[OF ab] plus_right_mono[OF IH]] show ?case unfolding bbs by simp qed lemma sum_list_ge_0_nth: fixes xs :: "('a :: ordered_semiring_0)list" assumes ge: "\ i. i < length xs \ xs ! i \ 0" shows "sum_list xs \ 0" proof - let ?l = "replicate (length xs) (0 :: 'a)" have "length xs = length ?l" by simp from sum_list_ge_mono[OF this] ge have "sum_list xs \ sum_list ?l" by simp also have "sum_list ?l = 0" using sum_list_0[of ?l] by auto finally show ?thesis . qed lemma sum_list_ge_0: fixes xs :: "('a :: ordered_semiring_0)list" assumes ge: "\ x. x \ set xs \ x \ 0" shows "sum_list xs \ 0" by (rule sum_list_ge_0_nth, insert ge[unfolded set_conv_nth], auto) lemma foldr_max: "a \ set as \ foldr max as b \ (a :: 'a :: ordered_ab_semigroup)" proof (induct as arbitrary: b) case Nil thus ?case by simp next case (Cons c as) show ?case proof (cases "a = c") case True show ?thesis unfolding True by auto next case False with Cons have "foldr max as b \ a" by auto from ge_trans[OF _ this] show ?thesis by auto qed qed lemma of_nat_mono[intro]: assumes "n \ m" shows "(of_nat n :: 'a :: ordered_semiring_1) \ of_nat m" proof - let ?n = "of_nat :: nat \ 'a" from assms show ?thesis proof (induct m arbitrary: n) case 0 show ?case by auto next case (Suc m nn) then obtain n where nn: "nn = Suc n" by (cases nn, auto) note Suc = Suc[unfolded nn] hence rec: "?n n \ ?n m" by simp show ?case unfolding nn of_nat_Suc by (rule plus_right_mono[OF rec]) qed qed text \non infinitesmal is the same as in the CADE07 bounded increase paper\ definition non_inf :: "'a rel \ bool" where "non_inf r \ \ a f. \ i. (f i, f (Suc i)) \ r \ (f i, a) \ r" lemma non_infI[intro]: assumes "\ a f. \ \ i. (f i, f (Suc i)) \ r\ \ \ i. (f i, a) \ r" shows "non_inf r" using assms unfolding non_inf_def by blast lemma non_infE[elim]: assumes "non_inf r" and "\ i. (f i, f (Suc i)) \ r \ (f i, a) \ r \ P" shows P using assms unfolding non_inf_def by blast lemma non_inf_image: assumes ni: "non_inf r" and image: "\ a b. (a,b) \ s \ (f a, f b) \ r" shows "non_inf s" proof fix a g assume s: "\ i. (g i, g (Suc i)) \ s" define h where "h = f o g" from image[OF s] have h: "\ i. (h i, h (Suc i)) \ r" unfolding h_def comp_def . from non_infE[OF ni, of h] have "\ a. \ i. (h i, a) \ r" using h by blast thus "\i. (g i, a) \ s" using image unfolding h_def comp_def by blast qed lemma SN_imp_non_inf: "SN r \ non_inf r" by (intro non_infI, auto) lemma non_inf_imp_SN_bound: "non_inf r \ SN {(a,b). (b,c) \ r \ (a,b) \ r}" by (rule, auto) end