theory Preliminaries imports "HOL-Analysis.Analysis" begin notation powr (infixr ".^" 80) section \Preliminary Definitions and Lemmas\ lemma seq_part_multiple: fixes m n :: nat assumes "m \ 0" defines "A \ \i::nat. {i*m ..< (i+1)*m}" shows "\i j. i \ j \ A i \ A j = {}" and "(\i j \ A i \ A j = {}" proof (erule contrapos_np) assume "A i \ A j \ {}" then obtain k where "k \ A i \ A j" by blast hence "i*m < (j+1)*m \ j*m < (i+1)*m" unfolding A_def by force hence "i < j+1 \ j < i+1" using mult_less_cancel2 by blast thus "i = j" by force qed } thus "\i j. i \ j \ A i \ A j = {}" by blast next show "(\ii {..< n*m}" proof fix x::nat assume "x \ (\i n" by linarith hence "x < n*m" by (meson less_le_trans mult_le_cancel2 i_x) thus "x \ {..< n*m}" using diff_mult_distrib mult_1 i_n by auto qed next show "{..< n*m} \ (\i {..< n*m}" hence "?i < n" by (simp add: less_mult_imp_div_less) moreover have "?i*m \ x \ x < (?i+1)*m" using assms div_times_less_eq_dividend dividend_less_div_times by auto ultimately show "x \ (\i 0" shows "a / b * b = a" by (simp add: assms) lemma inverse_powr: "(1/a).^b = a.^-b" if "a > 0" for a b :: real by (smt that powr_divide powr_minus_divide powr_one_eq_one) lemma powr_eq_one_iff_gen[simp]: "a.^x = 1 \ x = 0" if "a > 0" "a \ 1" for a x :: real by (metis powr_eq_0_iff powr_inj powr_zero_eq_one that) lemma powr_less_cancel2: "0 < a \ 0 < x \ 0 < y \ x.^a < y.^a \ x < y" for a x y ::real proof - assume a_pos: "0 < a" and x_pos: "0 < x" and y_pos: "0 < y" show "x.^a < y.^a \ x < y" proof (erule contrapos_pp) assume "\ x < y" hence "x \ y" by fastforce hence "x.^a \ y.^a" proof (cases "x = y") case True thus ?thesis by simp next case False hence "x.^a > y.^a" using \x \ y\ powr_less_mono2 a_pos y_pos by auto thus ?thesis by auto qed thus "\ x.^a < y.^a" by fastforce qed qed lemma geometric_increasing_sum_aux: "(1-r)^2 * (\kk 1" for n::nat and r::real by (subst geometric_increasing_sum_aux[THEN sym], simp add: that) lemma Reals_UNIV[simp]: "\ = {x::real. True}" unfolding Reals_def by auto lemma DERIV_fun_powr2: fixes a::real assumes a_pos: "a > 0" and f: "DERIV f x :> r" shows "DERIV (\x. a.^(f x)) x :> a.^(f x) * r * ln a" proof - let ?g = "(\x. a)" have g: "DERIV ?g x :> 0" by simp have pos: "?g x > 0" by (simp add: a_pos) show ?thesis using DERIV_powr[OF g pos f] a_pos by (auto simp add: field_simps) qed lemma has_real_derivative_powr2: assumes a_pos: "a > 0" shows "((\x. a.^x) has_real_derivative a.^x * ln a) (at x)" proof - let ?f = "(\x. x::real)" have f: "DERIV ?f x :> 1" by simp thus ?thesis using DERIV_fun_powr2[OF a_pos f] by simp qed lemma has_integral_powr2_from_0: fixes a c :: real assumes a_pos: "a > 0" and a_neq_1: "a \ 1" and c_nneg: "c \ 0" shows "((\x. a.^x) has_integral ((a.^c - 1) / (ln a))) {0..c}" proof - have "((\x. a.^x) has_integral ((a.^c)/(ln a) - (a.^0)/(ln a))) {0..c}" proof (rule fundamental_theorem_of_calculus[OF c_nneg]) fix x::real assume "x \ {0..c}" show "((\y. a.^y / ln a) has_vector_derivative a.^x) (at x within {0..c})" using has_real_derivative_powr2[OF a_pos, of x] apply - apply (drule DERIV_cdivide[where c = "ln a"], simp add: assms) apply (rule has_vector_derivative_within_subset[where S=UNIV and T="{0..c}"], auto) by (rule iffD1[OF has_field_derivative_iff_has_vector_derivative]) qed thus ?thesis using assms powr_zero_eq_one by (simp add: field_simps) qed lemma integrable_on_powr2_from_0: fixes a c :: real assumes a_pos: "a > 0" and a_neq_1: "a \ 1" and c_nneg: "c \ 0" shows "(\x. a.^x) integrable_on {0..c}" using has_integral_powr2_from_0[OF assms] unfolding integrable_on_def by blast lemma integrable_on_powr2_from_0_general: fixes a c :: real assumes a_pos: "a > 0" and c_nneg: "c \ 0" shows "(\x. a.^x) integrable_on {0..c}" proof (cases "a = 1") case True thus ?thesis using has_integral_const_real by auto next case False thus ?thesis using has_integral_powr2_from_0 False assms by auto qed lemma has_integral_null_interval: fixes a b :: real and f::"real \ real" assumes "a \ b" shows "(f has_integral 0) {a..b}" using assms content_real_eq_0 by blast lemma has_integral_interval_reverse: fixes f :: "real \ real" and a b :: real assumes "a \ b" and "continuous_on {a..b} f" shows "((\x. f (a+b-x)) has_integral (integral {a..b} f)) {a..b}" proof - let ?g = "\x. a + b - x" let ?g' = "\x. -1" have g_C0: "continuous_on {a..b} ?g" using continuous_on_op_minus by simp have Dg_g': "\x. x\{a..b} \ (?g has_field_derivative ?g' x) (at x within {a..b})" by (auto intro!: derivative_eq_intros) show ?thesis using has_integral_substitution_general [of "{}" a b ?g a b f, simplified, OF assms g_C0 Dg_g', simplified] apply (simp add: has_integral_null_interval[OF assms(1), THEN integral_unique]) by (simp add: has_integral_neg_iff) qed end