(* Title: Isomorphisms Betweeen Predicates, Sets and Relations *} Author: Victor Gomes, Georg Struth Maintainer: Victor Gomes Georg Struth *) section \Isomorphisms Between Predicates, Sets and Relations\ theory P2S2R imports Main begin notation relcomp (infixl ";" 70) notation inf (infixl "\" 70) notation sup (infixl "\" 65) notation Id_on ("s2r") notation Domain ("r2s") notation Collect ("p2s") definition rel_n :: "'a rel \ 'a rel" where "rel_n \ (\X. Id \ - X)" lemma subid_meet: "R \ Id \ S \ Id \ R \ S = R ; S" by blast subsection\Isomorphism Between Sets and Relations\ lemma srs: "r2s \ s2r = id" by auto lemma rsr: "R \ Id \ s2r (r2s R) = R" by (auto simp: Id_def Id_on_def Domain_def) lemma s2r_inj: "inj s2r" by (metis Domain_Id_on injI) lemma r2s_inj: "R \ Id \ S \ Id \ r2s R = r2s S \ R = S" by (metis rsr) lemma s2r_surj: "\R \ Id. \A. R = s2r A" using rsr by auto lemma r2s_surj: "\A. \R \ Id. A = r2s R" by (metis Domain_Id_on Id_onE pair_in_Id_conv subsetI) lemma s2r_union_hom: "s2r (A \ B) = s2r A \ s2r B" by (simp add: Id_on_def) lemma s2r_inter_hom: "s2r (A \ B) = s2r A \ s2r B" by (auto simp: Id_on_def) lemma s2r_inter_hom_var: "s2r (A \ B) = s2r A ; s2r B" by (auto simp: Id_on_def) lemma s2r_compl_hom: "s2r (- A) = rel_n (s2r A)" by (auto simp add: rel_n_def) lemma r2s_union_hom: "r2s (R \ S) = r2s R \ r2s S" by auto lemma r2s_inter_hom: "R \ Id \ S \ Id \ r2s (R \ S) = r2s R \ r2s S" by auto lemma r2s_inter_hom_var: "R \ Id \ S \ Id \ r2s (R ; S) = r2s R \ r2s S" by (metis r2s_inter_hom subid_meet) lemma r2s_ad_hom: "R \ Id \ r2s (rel_n R) = - r2s R" by (metis r2s_surj rsr s2r_compl_hom) subsection \Isomorphism Between Predicates and Sets\ type_synonym 'a pred = "'a \ bool" definition s2p :: "'a set \ 'a pred" where "s2p S = (\x. x \ S)" lemma sps [simp]: "s2p \ p2s = id" by (intro ext, simp add: s2p_def) lemma psp [simp]: "p2s \ s2p = id" by (intro ext, simp add: s2p_def) lemma s2p_bij: "bij s2p" using o_bij psp sps by blast lemma p2s_bij: "bij p2s" using o_bij psp sps by blast lemma s2p_compl_hom: "s2p (- A) = - (s2p A)" by (metis Collect_mem_eq comp_eq_dest_lhs id_apply sps uminus_set_def) lemma s2p_inter_hom: "s2p (A \ B) = (s2p A) \ (s2p B)" by (metis Collect_mem_eq comp_eq_dest_lhs id_apply inf_set_def sps) lemma s2p_union_hom: "s2p (A \ B) = (s2p A) \ (s2p B)" by (auto simp: s2p_def) lemma p2s_neg_hom: "p2s (- P) = - (p2s P)" by fastforce lemma p2s_conj_hom: "p2s (P \ Q) = p2s P \ p2s Q" by blast lemma p2s_disj_hom: "p2s (P \ Q) = p2s P \ p2s Q" by blast subsection \Isomorphism Between Predicates and Relations\ definition p2r :: "'a pred \ 'a rel" where "p2r P = {(s,s) |s. P s}" definition r2p :: "'a rel \ 'a pred" where "r2p R = (\x. x \ Domain R)" lemma p2r_subid: "p2r P \ Id" by (simp add: p2r_def subset_eq) lemma p2s2r: "p2r = s2r \ p2s" proof (intro ext) fix P :: "'a pred" have "{(a, a) |a. P a} = {(b, a). b = a \ P b}" by blast thus "p2r P = (s2r \ p2s) P" by (simp add: Id_on_def' p2r_def) qed lemma r2s2p: "r2p = s2p \ r2s" by (intro ext, simp add: r2p_def s2p_def) lemma prp [simp]: "r2p \ p2r = id" by (intro ext, simp add: p2s2r r2p_def) lemma rpr: "R \ Id \ p2r (r2p R) = R" by (metis comp_apply id_apply p2s2r psp r2s2p rsr) lemma p2r_inj: "inj p2r" by (metis comp_eq_dest_lhs id_apply injI prp) lemma r2p_inj: "R \ Id \ S \ Id \ r2p R = r2p S \ R = S" by (metis rpr) lemma p2r_surj: "\ R \ Id. \P. R = p2r P" using rpr by auto lemma r2p_surj: "\P. \R \ Id. P = r2p R" by (metis comp_apply id_apply p2r_subid prp) lemma p2r_neg_hom: "p2r (- P) = rel_n (p2r P)" by (simp add: p2s2r p2s_neg_hom s2r_compl_hom) lemma p2r_conj_hom [simp]: "p2r P \ p2r Q = p2r (P \ Q)" by (simp add: p2s2r p2s_conj_hom s2r_inter_hom) lemma p2r_conj_hom_var [simp]: "p2r P ; p2r Q = p2r (P \ Q)" by (simp add: p2s2r p2s_conj_hom s2r_inter_hom_var) lemma p2r_id_neg [simp]: "Id \ - p2r p = p2r (-p)" by (auto simp: p2r_def) lemma [simp]: "p2r bot = {}" by (auto simp: p2r_def) lemma p2r_disj_hom [simp]: "p2r P \ p2r Q = p2r (P \ Q)" by (simp add: p2s2r p2s_disj_hom s2r_union_hom) lemma r2p_ad_hom: "R \ Id \ r2p (rel_n R) = - (r2p R)" by (simp add: r2s2p r2s_ad_hom s2p_compl_hom) lemma r2p_inter_hom: "R \ Id \ S \ Id \ r2p (R \ S) = (r2p R) \ (r2p S)" by (simp add: r2s2p r2s_inter_hom s2p_inter_hom) lemma r2p_inter_hom_var: "R \ Id \ S \ Id \ r2p (R ; S) = (r2p R) \ (r2p S)" by (simp add: r2s2p r2s_inter_hom_var s2p_inter_hom) lemma rel_to_pred_union_hom: "R \ Id \ S \ Id \ r2p (R \ S) = (r2p R) \ (r2p S)" by (simp add: Domain_Un_eq r2s2p s2p_union_hom) end