(* Title: IL_AF_Stream.thy Date: Jan 2007 Author: David Trachtenherz *) section \\textsc{AutoFocus} message streams and temporal logic on intervals\ theory IL_AF_Stream imports Main "Nat-Interval-Logic.IL_TemporalOperators" AF_Stream begin subsection \Stream views -- joining streams and intervals\ subsubsection \Basic definitions\ primrec f_join_aux :: "'a list \ nat \ iT \ 'a list" where "f_join_aux [] n I = []" | "f_join_aux (x # xs) n I = (if n \ I then [x] else []) @ f_join_aux xs (Suc n) I" text \ The functions \f_join\ and \i_join\ deliver views of finite and infinite streams through intervals (more exactly: arbitrary natural sets). A stream view contains only the elements of the original stream at positions, which are contained in the interval. For instance, \f_join [0,10,20,30,40] {1,4} = [10,40]\\ definition f_join :: "'a list \ iT \ 'a list" (infixl "\\<^sub>f" 100) where "xs \\<^sub>f I \ f_join_aux xs 0 I" definition i_join :: "'a ilist \ iT \ 'a ilist" (infixl "\\<^sub>i" 100) where "f \\<^sub>i I \ \n. (f (I \ n))" notation f_join (infixl "\\<^sub>" 100) and i_join (infixl "\\<^sub>" 100) text \ The function \i_f_join\ can be used for the case, when an infinite stream is joined with a finite interval. The function \i_join\ would then deliver an infinite stream, whose elements after position \card I\ are equal to initial stream's element at position \Max I\. The function \i_f_join\ in contrast cuts the resulting stream at this position and returns a finite stream.\ definition i_f_join :: "'a ilist \ iT \ 'a list" (infixl "\\<^bsub>i-f\<^esub>" 100) where "f \\<^bsub>i-f\<^esub> I \ f \ Suc (Max I) \\<^sub>f I" notation i_f_join (infixl "\\<^sub>" 100) text \ The function \i_f_join\ should be used only for finite sets in order to deliver well-defined results. The function \i_join\ should be used for infinite sets, because joining an infinite stream \s\ and a finite set \I\ using \i_join\ would deliver an infinite stream, ending with an infinite sequence of elements equal to \s (Max I)\.\ subsubsection \Basic results\ lemma f_join_aux_length: " \n. length (f_join_aux xs n I) = card (I \ {n..n i. i < card (I \ {n.. (f_join_aux xs n I) ! i = xs ! (((I \ {n.. i) - n)" apply (induct xs, simp) apply (clarsimp split del: if_split) apply (subgoal_tac "{n.. I") prefer 2 apply (simp add: nth_Cons') apply (subgoal_tac "Suc n \ (I \ {Suc n.. i", simp) apply (rule order_trans[OF _ iMin_le[OF inext_nth_closed]]) apply (rule order_trans[OF _ iMin_Int_ge2]) apply (subgoal_tac "n < n + length xs") prefer 2 apply (rule ccontr, simp) apply (simp add: iMin_atLeastLessThan) apply assumption+ apply simp apply (case_tac "I \ {Suc n.. iMin {Suc n.. (I \ {Suc n.. i1", simp) apply (rule order_trans[OF _ iMin_le[OF inext_nth_closed]]) apply (rule order_trans[OF _ iMin_Int_ge2]) apply assumption+ done text \Joining finite streams and intervals\ (*<*) (* lemma "[(0::nat),10,20,30,40] \\<^sub>f {1,4} = [10,40]" by (simp add: f_join_def) *) (*>*) lemma f_join_length: "length (xs \\<^sub>f I) = card (I \< length xs)" by (simp add: f_join_def f_join_aux_length atLeast0LessThan cut_less_Int_conv) lemma f_join_nth: "n < length (xs \\<^sub>f I) \ (xs \\<^sub>f I) ! n = xs ! (I \ n)" apply (simp add: f_join_length) apply (unfold f_join_def) apply (drule back_subst[OF _ cut_less_Int_conv]) apply (simp add: f_join_aux_nth atLeast0LessThan cut_less_Int_conv[symmetric] inext_nth_cut_less_eq) done lemma f_join_nth2: "n < card (I \< length xs) \ (xs \\<^sub>f I) ! n = xs ! (I \ n)" by (simp add: f_join_nth f_join_length) lemma f_join_empty: "xs \\<^sub>f {} = []" by (simp add: length_0_conv[symmetric] f_join_length cut_less_empty del: length_0_conv) lemma f_join_Nil: "[] \\<^sub>f I = []" by (simp add: length_0_conv[symmetric] f_join_length cut_less_0_empty del: length_0_conv) lemma f_join_Nil_conv: "(xs \\<^sub>f I = []) = (I \< length xs = {})" by (simp add: length_0_conv[symmetric] f_join_length card_0_eq[OF nat_cut_less_finite] del: length_0_conv) lemma f_join_Nil_conv': "(xs \\<^sub>f I = []) = (\i I)" by (fastforce simp: f_join_Nil_conv) lemma f_join_all_conv: "(xs \\<^sub>f I = xs) = ({.. I)" apply (case_tac "length xs = 0", simp add: f_join_Nil) apply (rule iffI) apply (rule subsetI, rename_tac t) apply (clarsimp simp: list_eq_iff[of _ xs] f_join_length) apply (rule ccontr) apply (subgoal_tac "I \< length xs \ {..\<^sub>f I) = length xs") prefer 2 apply (simp add: f_join_length cut_less_Int_conv Int_absorb1) apply (clarsimp simp: list_eq_iff[of _ xs] f_join_nth) apply (rule arg_cong[where f="(!) xs"]) apply (subgoal_tac "I \< length xs = {.. I \ xs \\<^sub>f I = xs" by (rule f_join_all_conv[THEN iffD2]) corollary f_join_UNIV: "xs \\<^sub>f UNIV = xs" by (simp add: f_join_all) lemma f_join_union: " \ finite A; Max A < iMin B \ \ xs \\<^sub>f (A \ B) = xs \\<^sub>f A @ (xs \\<^sub>f B)" apply (case_tac "A = {}", simp add: f_join_empty) apply (case_tac "B = {}", simp add: f_join_empty) apply (frule Max_less_iMin_imp_disjoint, assumption) apply (simp add: list_eq_iff f_join_length cut_less_Un del: Max_less_iff) apply (subgoal_tac "A \< length xs \ B \< length xs = {}") prefer 2 apply (simp add: cut_less_Int[symmetric] cut_less_empty) apply (frule card_Un_disjoint[OF nat_cut_less_finite nat_cut_less_finite]) apply (clarsimp simp del: Max_less_iff) apply (subst f_join_nth) apply (simp add: f_join_length cut_less_Un) apply (simp add: nth_append f_join_length del: Max_less_iff, intro conjI impI) apply (simp add: f_join_nth f_join_length del: Max_less_iff) apply (rule ssubst[OF inext_nth_card_append_eq1], assumption) apply (rule order_less_le_trans[OF _ cut_less_card], assumption+) apply simp apply (subst f_join_nth) apply (simp add: f_join_length) apply (subgoal_tac "iMin B < length xs") prefer 2 apply (rule ccontr) apply (simp add: linorder_not_less cut_less_Min_empty) apply (frule order_less_trans, assumption) apply (rule arg_cong[where f="\x. xs ! x"]) apply (simp add: cut_less_Max_all inext_nth_card_append_eq2) done lemma f_join_singleton_if: " xs \\<^sub>f {n} = (if n < length xs then [xs ! n] else [])" apply (clarsimp simp: list_eq_iff f_join_length cut_less_singleton) apply (insert f_join_nth[of 0 xs "{n}"]) apply (simp add: f_join_length cut_less_singleton) done lemma f_join_insert: " n < length xs \ xs \\<^sub>f insert n I = xs \\<^sub>f (I \< n) @ (xs ! n) # (xs \\<^sub>f (I \> n))" apply (rule_tac t="insert n I" and s="(I \< n) \ {n} \ (I \> n)" in subst, fastforce) apply (insert nat_cut_less_finite[of I n]) apply (case_tac "I \> n = {}") apply (simp add: f_join_empty del: Un_insert_right) apply (case_tac "I \< n = {}") apply (simp add: f_join_empty f_join_singleton_if) apply (subgoal_tac "Max (I \< n) < iMin {n}") prefer 2 apply (simp add: cut_less_mem_iff) apply (simp add: f_join_union f_join_singleton_if del: Un_insert_right) apply (subgoal_tac "Max {n} < iMin (I \> n)") prefer 2 apply (simp add: iMin_gr_iff cut_greater_mem_iff) apply (case_tac "I \< n = {}") apply (simp add: f_join_empty f_join_union f_join_singleton_if del: Un_insert_left) apply (subgoal_tac "Max (I \< n) < iMin {n}") prefer 2 apply (simp add: cut_less_mem_iff) apply (subgoal_tac "Max (I \< n \ {n}) < iMin (I \> n)") prefer 2 apply (simp add: iMin_gr_iff i_cut_mem_iff) apply (simp add: f_join_union f_join_singleton_if del: Un_insert_right) done lemma f_join_snoc: " (xs @ [x]) \\<^sub>f I = xs \\<^sub>f I @ (if length xs \ I then [x] else [])" apply (simp add: list_eq_iff f_join_length) apply (subgoal_tac " card (I \< Suc (length xs)) = card (I \< length xs) + (if length xs \ I then Suc 0 else 0)") prefer 2 apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_less_conv_if) apply (simp add: card_insert_if[OF nat_cut_less_finite] cut_less_mem_iff) apply simp apply (case_tac "length xs \ I") apply (clarsimp simp: f_join_length) apply (simp add: nth_append f_join_length, intro conjI impI) apply (subst f_join_nth[of _ "xs @ [x]"]) apply (simp add: f_join_length) apply (simp add: nth_append less_card_cut_less_imp_inext_nth_less) apply (simp add: f_join_nth f_join_length) apply (simp add: linorder_not_less less_Suc_eq_le) apply (subst f_join_nth) apply (simp add: f_join_length) apply (subgoal_tac "I \ i = length xs") prefer 2 apply (rule_tac t="length xs" and s="Max (I \< Suc (length xs))" in subst) apply (rule Max_equality[OF _ nat_cut_less_finite]) apply (simp add: cut_less_mem_iff)+ apply (subst inext_nth_cut_less_eq[of _ _ "Suc (length xs)", symmetric], simp) apply (rule inext_nth_card_Max[OF nat_cut_less_finite]) apply (simp add: card_gr0_imp_not_empty) apply simp+ apply (simp add: f_join_nth f_join_length) apply (simp add: nth_append less_card_cut_less_imp_inext_nth_less) done (*<*) (* lemma " let xs = [0::nat,10,20,30]; ys =[100,110,120,130]; I = {0,2,4,6} in (xs @ ys) \\<^sub>f I = xs \\<^sub>f I @ (ys \\<^sub>f (I \- (length xs)))" by (simp add: Let_def f_join_def iT_Plus_neg_def) *) (*>*) lemma f_join_append: " (xs @ ys) \\<^sub>f I = xs \\<^sub>f I @ ys \\<^sub>f (I \- (length xs))" apply (induct ys rule: rev_induct) apply (simp add: f_join_Nil) apply (simp add: append_assoc[symmetric] f_join_snoc del: append_assoc) apply (simp add: iT_Plus_neg_mem_iff add.commute[of "length xs"]) done lemma take_f_join_eq1: " n < card (I \< length xs) \ (xs \\<^sub>f I) \ n = xs \\<^sub>f (I \< (I \ n))" apply (frule less_card_cut_less_imp_inext_nth_less) apply (simp add: list_eq_iff f_join_length cut_cut_less min_eqR) apply (subgoal_tac "n < card I \ infinite I") prefer 2 apply (case_tac "finite I") apply (drule order_less_le_trans[OF _ cut_less_card], simp+) apply (simp add: min_eqL cut_less_inext_nth_card_eq1) apply clarify apply (subst f_join_nth) apply (simp add: f_join_length) apply (subst f_join_nth) apply (simp add: f_join_length cut_cut_less min_eqL) apply (simp add: cut_less_inext_nth_card_eq1) apply (simp add: cut_less_inext_nth_card_eq1 inext_nth_cut_less_eq) done lemma take_f_join_eq2: " card (I \< length xs) \ n \ (xs \\<^sub>f I) \ n = xs \\<^sub>f I" by (simp add: f_join_length) lemma take_f_join_if: " (xs \\<^sub>f I) \ n = (if n < card (I \< length xs) then xs \\<^sub>f (I \< (I \ n)) else xs \\<^sub>f I)" by (simp add: take_f_join_eq1 take_f_join_eq2) lemma drop_f_join_eq1: " n < card (I \< length xs) \ (xs \\<^sub>f I) \ n = xs \\<^sub>f (I \\ (I \ n))" apply (case_tac "I = {}") apply (simp add: cut_less_empty) apply (case_tac "I \< length xs = {}") apply (simp add: cut_less_empty) apply (rule same_append_eq[THEN iffD1, of "xs \\<^sub>f I \ n"]) txt \First, a simplification step without \take_f_join_eq1\ required for correct transformation, in order to eliminate \(xs \\<^sub>f I) \ n\ in the equation.\ apply simp txt \Now, \take_f_join_eq1\ can be applied\ apply (simp add: take_f_join_eq1) apply (case_tac "I \< (I \ n) = {}") apply (simp add: f_join_empty) apply (rule_tac t= "I \ n" and s="iMin I" in subst) apply (rule ccontr) apply (drule neq_le_trans[of "iMin I"]) apply (simp add: iMin_le[OF inext_nth_closed]) apply (simp add: cut_less_Min_not_empty) apply (simp add: cut_ge_Min_all) apply (subst f_join_union[OF nat_cut_less_finite, symmetric]) apply (subgoal_tac "I \\ (I \ n) \ {}") prefer 2 apply (simp add: cut_ge_not_empty_iff) apply (blast intro: inext_nth_closed) apply (simp add: nat_cut_less_finite i_cut_mem_iff iMin_gr_iff) apply (simp add: cut_less_cut_ge_ident) done lemma drop_f_join_eq2: " card (I \< length xs) \ n \ (xs \\<^sub>f I) \ n = []" by (simp add: f_join_length) lemma drop_f_join_if: " (xs \\<^sub>f I) \ n = (if n < card (I \< length xs) then xs \\<^sub>f (I \\ (I \ n)) else [])" by (simp add: drop_f_join_eq1 drop_f_join_eq2) lemma f_join_take: "xs \ n \\<^sub>f I = xs \\<^sub>f (I \< n)" apply (clarsimp simp: list_eq_iff f_join_length cut_cut_less min.commute) apply (simp add: f_join_nth f_join_length cut_cut_less min.commute) apply (case_tac "n < length xs") apply (simp add: min_eqL inext_nth_cut_less_eq) apply (simp add: less_card_cut_less_imp_inext_nth_less) apply (simp add: min_eqR linorder_not_less) apply (subst inext_nth_cut_less_eq) apply (rule order_less_le_trans, assumption) apply (rule card_mono[OF nat_cut_less_finite cut_less_mono], assumption) apply simp done lemma f_join_drop: "xs \ n \\<^sub>f I = xs \\<^sub>f (I \ n)" apply (case_tac "length xs \ n") apply (simp add: f_join_Nil) apply (rule sym) apply (simp add: f_join_Nil_conv' iT_Plus_mem_iff) apply (rule subst[OF append_take_drop_id, of "\x. xs \ n \\<^sub>f I = x \\<^sub>f (I \ n)" n]) apply (simp only: f_join_append) apply (simp add: f_join_take min_eqR) apply (simp add: iT_Plus_Plus_neg_inverse) apply (rule_tac t="(I \ n) \< n" and s="{}" in subst) apply (rule sym) apply (simp add: cut_less_empty_iff iT_Plus_mem_iff) apply (simp add: f_join_empty) done lemma cut_less_eq_imp_f_join_eq: " A \< length xs = B \< length xs \ xs \\<^sub>f A = xs \\<^sub>f B" apply (clarsimp simp: list_eq_iff f_join_length f_join_nth) apply (rule subst[OF inext_nth_cut_less_eq, of _ A "length xs"], simp) apply (rule subst[OF inext_nth_cut_less_eq, of _ B "length xs"], simp) apply simp done corollary f_join_cut_less_eq: " length xs \ t \ xs \\<^sub>f (I \< t) = xs \\<^sub>f I" apply (rule cut_less_eq_imp_f_join_eq) apply (simp add: cut_cut_less min_eqR) done lemma take_Suc_Max_eq_imp_f_join_eq: " \ finite I; xs \ Suc (Max I) = ys \ Suc (Max I) \ \ xs \\<^sub>f I = ys \\<^sub>f I" apply (case_tac "I = {}") apply (simp add: f_join_empty) apply (simp add: list_eq_iff f_join_length) apply (case_tac "length xs < Suc (Max I)") apply (case_tac "length ys < Suc (Max I)") apply (clarsimp simp: min_eqL, rename_tac i) apply (simp add: f_join_nth2) apply (drule_tac x="I \ i" in spec) apply (subgoal_tac "I \ i < length ys") prefer 2 apply (rule less_card_cut_less_imp_inext_nth_less, simp) apply simp apply (simp add: min_eq) apply (case_tac "length ys < Suc (Max I)") apply (simp add: min_eq) apply (simp add: linorder_not_less min_eqR Suc_le_eq del: Max_less_iff) apply (subgoal_tac "I \< length xs = I \< length ys") prefer 2 apply (simp add: cut_less_Max_all) apply (clarsimp simp: f_join_nth2 simp del: Max_less_iff, rename_tac i) apply (drule_tac x="I \ i" in spec) apply (subgoal_tac "I \ i < Suc (Max I)") prefer 2 apply (simp add: less_Suc_eq_le inext_nth_closed) apply (simp del: Max_less_iff) done corollary f_join_take_Suc_Max_eq: " finite I \ xs \ Suc (Max I) \\<^sub>f I = xs \\<^sub>f I" by (rule take_Suc_Max_eq_imp_f_join_eq, simp+) text \Joining infinite streams and infinite intervals\ lemma i_join_nth: "(f \\<^sub>i I) n = f (I \ n)" by (simp add: i_join_def) lemma i_join_UNIV: "f \\<^sub>i UNIV = f" by (simp add: ilist_eq_iff i_join_nth inext_nth_UNIV) lemma i_join_union: " \ finite A; Max A < iMin B; B \ {} \ \ f \\<^sub>i (A \ B) = (f \ Suc (Max A) \\<^sub>f A) \ (f \\<^sub>i B)" apply (case_tac "A = {}") apply (simp add: f_join_empty) apply (simp (no_asm) add: ilist_eq_iff, clarify) apply (simp add: i_join_nth i_append_nth f_join_length del: Max_less_iff) apply (subgoal_tac "A \< Suc (Max A) = A") prefer 2 apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_Max_all) apply (simp del: Max_less_iff, intro conjI impI) apply (simp add: inext_nth_card_append_eq1) apply (simp add: f_join_nth f_join_length) apply (simp add: less_card_cut_less_imp_inext_nth_less) apply (simp add: inext_nth_card_append_eq2) done lemma i_join_singleton: "f \\<^sub>i {a} = (\n. f a)" by (simp add: ilist_eq_iff i_join_nth inext_nth_singleton) lemma i_join_insert: " f \\<^sub>i (insert n I) = (f \ n) \\<^sub>f (I \< n) \ [f n] \ ( if I \> n = {} then (\x. f n) else f \\<^sub>i (I \> n))" apply (rule ssubst[OF insert_eq_cut_less_cut_greater]) apply (case_tac "I \< n = {}") apply (simp add: f_join_empty, intro conjI impI) apply (simp add: i_join_singleton ilist_eq_iff i_append_nth) apply (subgoal_tac "Max {n} < iMin (I \> n)") prefer 2 apply (simp add: cut_greater_Min_greater) apply simp apply (subst insert_is_Un) apply (subst i_join_union[OF singleton_finite]) apply (simp add: f_join_singleton_if)+ apply (intro conjI impI) apply (subgoal_tac "Max (I \< n) < iMin {n}") prefer 2 apply (simp add: nat_cut_less_Max_less) apply (rule_tac t="insert n (I \< n)" and s="(I \< n) \ {n}" in subst, simp) apply (subst i_join_union[OF nat_cut_less_finite _ singleton_not_empty], simp) apply (simp add: i_join_singleton) apply (rule_tac s="\x. f n" and t="[f n] \ (\x. f n)" in subst) apply (simp add: ilist_eq_iff i_append_nth) apply (subst i_append_assoc[symmetric]) apply (rule_tac t="[f n] \ (\x. f n)" and s="(\x. f n)" in subst) apply (simp add: ilist_eq_iff i_append_nth) apply (rule arg_cong) apply (simp add: take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite] min_eqR) apply (subgoal_tac "Max (I \< n) < iMin {n} \ Max {n} < iMin (I \> n)", elim conjE) prefer 2 apply (simp add: cut_greater_Min_greater nat_cut_less_Max_less) apply (rule_tac t="insert n (I \< n \ I \> n)" and s="(I \< n \ ({n} \ I \> n))" in subst, simp) apply (subgoal_tac "({n} \ I \> n) \ {} \ Max (I \< n) < iMin ({n} \ I \> n)", elim conjE) prefer 2 apply (simp add: iMin_insert) apply (simp add: i_join_union nat_cut_less_finite singleton_finite del: Un_insert_left Un_insert_right Max_less_iff) apply (simp add: f_join_singleton_if) apply (rule arg_cong) apply (simp add: take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite] min_eqR) done lemma i_join_i_append: " infinite I \ (xs \ f) \\<^sub>i I = (xs \\<^sub>f I) \ (f \\<^sub>i (I \- length xs))" apply (clarsimp simp: ilist_eq_iff) apply (simp add: i_join_nth i_append_nth f_join_length) apply (subgoal_tac "I \\ length xs \ {}") prefer 2 apply (fastforce simp: cut_ge_not_empty_iff infinite_nat_iff_unbounded_le) apply (simp add: inext_nth_less_less_card_conv) apply (intro conjI impI) apply (simp add: f_join_nth f_join_length) apply (subgoal_tac "I \- length xs \ {}") prefer 2 apply (simp add: iT_Plus_neg_empty_iff infinite_imp_nonempty) apply (simp add: iT_Plus_neg_inext_nth) apply (case_tac "I \< length xs = {}") apply (frule cut_less_empty_iff[THEN iffD1, THEN cut_ge_all_iff[THEN iffD2]]) apply simp apply (rule subst[OF inext_nth_card_append_eq2, OF nat_cut_less_finite], simp+) apply (simp add: less_imp_Max_less_iMin[OF nat_cut_less_finite] i_cut_mem_iff) apply simp apply (simp add: cut_less_cut_ge_ident) done lemma i_take_i_join: "infinite I \ f \\<^sub>i I \ n = f \ (I \ n) \\<^sub>f I" apply (clarsimp simp: list_eq_iff f_join_length cut_less_inext_nth_card_eq1, rename_tac i) apply (simp add: i_join_nth) apply (frule inext_nth_mono2_infin[THEN iffD2], assumption) apply (rule_tac t="f (I \ i)" and s="f \ (I \ n) ! (I \ i)" in subst, simp) apply (rule sym, rule f_join_nth) apply (simp add: f_join_length) apply (simp add: inext_nth_less_less_card_conv[OF nat_cut_ge_infinite_not_empty]) done lemma i_drop_i_join: "I \ {} \ f \\<^sub>i I \ n = f \\<^sub>i (I \\ (I \ n))" apply (simp (no_asm) add: ilist_eq_iff) apply (simp add: i_join_nth inext_nth_cut_ge_inext_nth) done lemma i_join_i_take: "f \ n \\<^sub>f I = f \\<^sub>i I \ card (I \< n)" apply (clarsimp simp: list_eq_iff f_join_length) apply (frule less_card_cut_less_imp_inext_nth_less) apply (simp add: i_join_nth f_join_length f_join_nth) done lemma i_join_i_drop: "I \ {} \ f \ n \\<^sub>i I = f \\<^sub>i (I \ n)" apply (simp (no_asm) add: ilist_eq_iff) apply (simp add: i_join_nth iT_Plus_inext_nth add.commute[of _ n]) done lemma i_join_finite_nth_ge_card_eq_nth_Max: " \ finite I; I \ {}; card I \ Suc n \ \ (f \\<^sub>i I) n = f (Max I)" by (simp add: i_join_nth inext_nth_card_Max) lemma i_join_finite_i_drop_card_eq_const_nth_Max: " \ finite I; I \ {} \ \ (f \\<^sub>i I) \ (card I) = (\n. f (Max I))" by (simp add: ilist_eq_iff i_join_finite_nth_ge_card_eq_nth_Max) lemma i_join_finite_i_append_nth_Max_conv: " \ finite I; I \ {} \ \ (f \\<^sub>i I) = f \ Suc (Max I) \\<^sub>f I \ (\n. f (Max I))" apply (simp (no_asm) add: ilist_eq_iff, clarify) apply (subgoal_tac "I \< (Suc (Max I)) = I") prefer 2 apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_Max_all) apply (simp add: i_append_nth i_join_nth f_join_length) apply (intro conjI impI) apply (simp add: f_join_nth f_join_length) apply (rule sym, rule i_take_nth) apply (simp add: less_card_cut_less_imp_inext_nth_less) apply (simp add: inext_nth_card_Max) done text \Joining infinite streams and finite intervals\ lemma i_f_join_length: "finite I \ length (f \\<^bsub>i-f\<^esub> I) = card I" apply (simp add: i_f_join_def f_join_length) apply (simp add: nat_cut_le_less_conv[symmetric] cut_le_Max_all) done lemma i_f_join_nth: "n < card I \ f \\<^bsub>i-f\<^esub> I ! n = f (I \ n)" apply (frule card_gr0_imp_finite[OF gr_implies_gr0]) apply (frule card_gr0_imp_not_empty[OF gr_implies_gr0]) apply (simp add: i_f_join_def) apply (subst i_take_nth[ of "I \ n" "Suc (Max I)" f, symmetric]) apply (rule le_imp_less_Suc) apply (simp add: Max_ge[OF _ inext_nth_closed]) apply (simp add: f_join_nth2 nat_cut_le_less_conv[symmetric] cut_le_Max_all) done lemma i_f_join_empty: "f \\<^bsub>i-f\<^esub> {} = []" by (simp add: i_f_join_def f_join_empty) lemma i_f_join_eq_i_join_i_take: " finite I \ f \\<^bsub>i-f\<^esub> I = f \\<^sub>i I \ (card I)" apply (simp add: i_f_join_def) apply (simp add: i_join_i_take nat_cut_le_less_conv[symmetric] cut_le_Max_all) done lemma i_f_join_union: " \ finite A; finite B; Max A < iMin B \ \ f \\<^bsub>i-f\<^esub> (A \ B) = f \\<^bsub>i-f\<^esub> A @ f \\<^bsub>i-f\<^esub> B" apply (case_tac "A = {}", simp add: i_f_join_empty) apply (case_tac "B = {}", simp add: i_f_join_empty) apply (simp add: i_f_join_def f_join_union del: Max_less_iff) apply (subgoal_tac "Max A < Max B") prefer 2 apply (rule order_less_le_trans[OF _ iMin_le_Max], assumption+) apply (simp add: Max_Un max_eqR[OF less_imp_le]) apply (rule take_Suc_Max_eq_imp_f_join_eq, assumption) apply (simp add: min_eqR[OF less_imp_le]) done lemma i_f_join_singleton: "f \\<^bsub>i-f\<^esub> {n} = [f n]" by (simp add: i_f_join_def f_join_singleton_if) lemma i_f_join_insert: " finite I \ f \\<^bsub>i-f\<^esub> insert n I = f \\<^bsub>i-f\<^esub> (I \< n) @ f n # f \\<^bsub>i-f\<^esub> (I \> n)" apply (case_tac "I = {}") apply (simp add: i_f_join_singleton i_cut_empty i_f_join_empty) (* apply (subgoal_tac "n < Suc (Max (insert n I))") prefer 2 apply simp apply (frule less_Suc_eq_le[THEN iffD1])*) apply (simp add: i_f_join_def) apply (simp add: f_join_insert) apply (frule cut_greater_finite[of _ n]) apply (case_tac "I \> n = {}") apply (simp add: f_join_empty) apply (case_tac "I \< n = {}") apply (simp add: f_join_empty) apply (rule take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite]) apply simp apply (rule arg_cong[where f="\x. f \ x"]) apply simp apply (rule min_eqR, rule max.coboundedI1, rule less_imp_le) apply (simp add: nat_cut_less_Max_less) apply (simp add: cut_greater_Max_eq) apply (subgoal_tac "n < Max I") prefer 2 apply (rule ccontr) apply (simp add: linorder_not_less cut_greater_Max_empty) apply (simp add: max_eqR[OF less_imp_le]) apply (case_tac "I \< n = {}") apply (simp add: f_join_empty) apply (rule take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite]) apply simp apply (rule arg_cong[where f="\x. f \ x"]) apply simp apply (rule min_eqR) apply (blast intro: Max_subset) done lemma take_i_f_join_eq1: " n < card I \ f \\<^bsub>i-f\<^esub> I \ n = f \\<^bsub>i-f\<^esub> (I \< (I \ n))" apply (frule card_ge_0_finite[OF gr_implies_gr0]) apply (case_tac "I = {}") apply (simp add: cut_less_empty i_f_join_empty) apply (subgoal_tac "n < card (I \< Suc (Max I))") prefer 2 apply (simp add: cut_less_Max_all) apply (simp add: i_f_join_def take_f_join_eq1) apply (case_tac "I \< (I \ n) = {}") apply (simp add: f_join_empty) apply (rule take_Suc_Max_eq_imp_f_join_eq[OF nat_cut_less_finite]) apply simp apply (rule arg_cong[where f="\x. f \ x"]) apply simp apply (rule min_eqR) apply (rule order_trans[OF less_imp_le[OF cut_less_Max_less]]) apply (simp add: nat_cut_less_finite inext_nth_closed)+ done lemma take_i_f_join_eq2: " \ finite I; card I \ n \ \ f \\<^bsub>i-f\<^esub> I \ n = f \\<^bsub>i-f\<^esub> I" apply (case_tac "I = {}") apply (simp add: cut_less_empty i_f_join_empty) apply (simp add: i_f_join_def take_f_join_eq2 cut_less_Max_all) done lemma take_i_f_join_if: " finite I \ f \\<^bsub>i-f\<^esub> I \ n = (if n < card I then f \\<^bsub>i-f\<^esub> (I \< (I \ n)) else f \\<^bsub>i-f\<^esub> I)" by (simp add: take_i_f_join_eq1 take_i_f_join_eq2) lemma drop_i_f_join_eq1: " n < card I \ f \\<^bsub>i-f\<^esub> I \ n = f \\<^bsub>i-f\<^esub> (I \\ (I \ n))" apply (frule card_ge_0_finite[OF gr_implies_gr0]) apply (case_tac "I = {}") apply (simp add: cut_ge_empty i_f_join_empty) apply (subgoal_tac "n < card (I \< Suc (Max I))") prefer 2 apply (simp add: cut_less_Max_all) apply (simp add: i_f_join_def drop_f_join_eq1) apply (subgoal_tac "I \\ (I \ n) \ {}") prefer 2 apply (rule in_imp_not_empty[of "I \ n"]) apply (simp add: cut_ge_mem_iff inext_nth_closed) apply (rule take_Suc_Max_eq_imp_f_join_eq) apply (rule cut_ge_finite, assumption) apply simp apply (rule arg_cong[where f="\x. f \ x"]) apply (simp add: min_eqR cut_ge_Max_eq) done lemma drop_i_f_join_eq2: " \ finite I; card I \ n \ \ f \\<^bsub>i-f\<^esub> I \ n = []" by (simp add: i_f_join_length) lemma drop_i_f_join_if: " finite I \ f \\<^bsub>i-f\<^esub> I \ n = (if n < card I then f \\<^bsub>i-f\<^esub> (I \\ (I \ n)) else [])" by (simp add: drop_i_f_join_eq1 drop_i_f_join_eq2) lemma i_f_join_i_drop: " finite I \ f \ n \\<^bsub>i-f\<^esub> I = f \\<^bsub>i-f\<^esub> (I \ n)" apply (case_tac "I = {}") apply (simp add: iT_Plus_empty i_f_join_empty) apply (simp add: i_f_join_def iT_Plus_Max) apply (simp add: i_take_i_drop f_join_drop) done lemma i_take_Suc_Max_eq_imp_i_f_join_eq: " f \ Suc (Max I) = g \ Suc (Max I) \ f \\<^bsub>i-f\<^esub> I = g \\<^bsub>i-f\<^esub> I" by (simp add: i_f_join_def) lemma i_take_i_join_eq_i_f_join: " infinite I \ f \\<^sub>i I \ n = f \\<^bsub>i-f\<^esub> (I \< (I \ n))" apply (frule infinite_imp_nonempty) apply (case_tac "n = 0") apply (simp add: cut_less_Min_empty i_f_join_empty) apply (frule inext_nth_gr_Min_conv_infinite[THEN iffD2], simp) apply (simp add: i_take_i_join i_f_join_def) apply (subgoal_tac "Suc (Max (I \< (I \ n))) \ I \ n") prefer 2 apply (rule Suc_leI) apply (rule nat_cut_less_Max_less) apply (simp add: cut_less_Min_not_empty) apply (simp add: f_join_cut_less_eq) apply (simp add: i_join_i_take) apply (rule arg_cong[where f="\x. f \\<^sub>i I \ card x"]) apply (clarsimp simp: gr0_conv_Suc) apply (simp add: cut_le_less_inext_conv[OF inext_nth_closed, symmetric]) apply (simp add: nat_cut_le_less_conv[symmetric]) apply (rule arg_cong[where f="\x. I \\ x"]) apply (rule sym, rule Max_equality[OF _ nat_cut_le_finite]) apply (simp add: cut_le_mem_iff inext_nth_closed)+ done subsubsection \Results for intervals from \IL_Interval\\ lemma f_join_iFROM: "xs \\<^sub>f [n\] = xs \ n" apply (clarsimp simp: list_eq_iff f_join_length iFROM_cut_less iIN_card Suc_diff_Suc) apply (subst f_join_nth2) apply (simp add: iFROM_cut_less iIN_card) apply (simp add: iFROM_inext_nth) done lemma i_join_iFROM: "f \\<^sub>i [n\] = f \ n" by (simp add: ilist_eq_iff i_join_nth iFROM_inext_nth) lemma f_join_iIN: "xs \\<^sub>f [n\,d] = xs \ n \ Suc d" apply (simp add: list_eq_iff f_join_length iIN_cut_less iIN_card Suc_diff_Suc min_eq) apply (simp add: f_join_nth2 iIN_cut_less iIN_card iIN_inext_nth) done lemma i_f_join_iIN: "f \\<^bsub>i-f\<^esub> [n\,d] = f \ n \ Suc d" by (simp add: i_f_join_def f_join_iIN iIN_Max i_take_drop) lemma f_join_iTILL: "xs \\<^sub>f [\n] = xs \ (Suc n)" by (simp add: iIN_0_iTILL_conv[symmetric] f_join_iIN) lemma i_f_join_iTILL: "f \\<^bsub>i-f\<^esub> [\n] = f \ Suc n" by (simp add: iIN_0_iTILL_conv[symmetric] i_f_join_iIN) lemma f_join_f_expand_iT_Mult: " 0 < k \ xs \\<^sub>f k \\<^sub>f (I \ k) = xs \\<^sub>f I" apply (case_tac "I = {}") apply (simp add: iT_Mult_empty f_join_empty) apply (simp add: list_eq_iff f_join_length) apply (clarsimp simp: iT_Mult_cut_less2 iT_Mult_card) apply (simp add: f_join_nth2 iT_Mult_cut_less2 iT_Mult_card) apply (drule less_card_cut_less_imp_inext_nth_less) apply (simp add: iT_Mult_inext_nth f_expand_nth_mult) done lemma i_join_i_expand_iT_Mult: " \ 0 < k; I \ {} \ \ f \\<^sub>i k \\<^sub>i (I \ k) = f \\<^sub>i I" apply (simp (no_asm) add: ilist_eq_iff, clarify) apply (simp add: i_join_nth iT_Mult_inext_nth i_expand_nth_mult) done lemma i_f_join_i_expand_iT_Mult: " \ 0 < k; finite I \ \ f \\<^sub>i k \\<^bsub>i-f\<^esub> (I \ k) = f \\<^bsub>i-f\<^esub> I" apply (case_tac "I = {}") apply (simp add: iT_Mult_empty i_f_join_empty) apply (clarsimp simp: list_eq_iff i_f_join_length iT_Mult_finite_iff iT_Mult_not_empty iT_Mult_card) apply (simp add: i_f_join_nth iT_Mult_card iT_Mult_inext_nth i_expand_nth_mult) done lemma f_join_f_shrink_iT_Plus_iT_Div_mod: " \ 0 < k; \x\I. x mod k = 0 \ \ (xs \\<^sub>f k) \\<^sub>f (I \ (k - 1)) = xs \
\<^sub>f k \\<^sub>f (I \ k)" apply (case_tac "I = {}") apply (simp add: iT_Plus_empty iT_Div_empty f_join_empty) apply (simp add: list_eq_iff f_join_length f_shrink_length) apply (subgoal_tac "Suc (length xs) - k \ length xs - length xs mod k") prefer 2 apply (case_tac "length xs < k", simp) apply (simp add: Suc_diff_le linorder_not_less) apply (rule Suc_leI) apply (rule diff_less_mono2, simp) apply (rule order_less_le_trans[OF mod_less_divisor], assumption+) apply (rule context_conjI) apply (simp add: iT_Plus_cut_less iT_Div_cut_less2 iT_Plus_card) apply (subst iT_Div_card_inj_on) apply (rule mod_eq_imp_div_right_inj_on) apply clarsimp+ apply (rule arg_cong[where f=card]) apply (simp (no_asm_simp) add: set_eq_iff cut_less_mem_iff, clarify) apply (rule conj_cong, simp) apply (rule iffI) apply simp apply (frule_tac x=x and m=k in less_mod_eq_imp_add_divisor_le) apply (simp add: mod_diff_right_eq [symmetric]) apply simp apply (clarsimp simp: f_join_nth f_join_length f_shrink_length) apply (simp add: iT_Plus_inext_nth iT_Plus_not_empty) apply (simp add: iT_Div_mod_inext_nth) apply (subst f_shrink_nth_eq_f_last_message_hold_nth) apply (drule sym, simp, thin_tac "card x = card y" for x y) apply (simp add: iT_Plus_cut_less iT_Plus_card) apply (rule less_mult_imp_div_less) apply (rule less_le_trans[OF less_card_cut_less_imp_inext_nth_less], assumption) apply (simp add: div_mult_cancel) apply (simp add: div_mult_cancel inext_nth_closed) done lemma i_join_i_shrink_iT_Plus_iT_Div_mod: " \ 0 < k; I \ {}; \x\I. x mod k = 0 \ \ (f \\<^sub>i k) \\<^sub>i (I \ (k - 1))= f \
\<^sub>i k \\<^sub>i (I \ k)" apply (simp (no_asm) add: ilist_eq_iff, clarify) apply (simp add: i_join_nth) apply (simp add: i_shrink_nth_eq_i_last_message_hold_nth) apply (simp add: iT_Plus_inext_nth iT_Div_mod_inext_nth) apply (drule_tac x="I \ x" in bspec) apply (simp add: inext_nth_closed) apply (simp add: mod_0_div_mult_cancel) done lemma i_f_join_i_shrink_iT_Plus_iT_Div_mod: " \ 0 < k; finite I; \x\I. x mod k = 0 \ \ (f \\<^sub>i k) \\<^bsub>i-f\<^esub> (I \ (k - 1))= f \
\<^sub>i k \\<^bsub>i-f\<^esub> (I \ k)" apply (case_tac "I = {}") apply (simp add: iT_Plus_empty iT_Div_empty i_f_join_empty) apply (simp add: i_f_join_def iT_Plus_Max iT_Div_Max) apply (simp add: i_last_message_hold_i_take[symmetric] i_shrink_i_take_mult[symmetric]) apply (simp add: add.commute[of k]) apply (simp add: mod_0_div_mult_cancel[THEN iffD1]) apply (simp add: f_join_f_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) done corollary f_join_f_shrink_iT_Plus_iT_Div_mod_subst: " \ 0 < k; \x\I. x mod k = 0; A = I \ (k - 1); B = I \ k \ \ (xs \\<^sub>f k) \\<^sub>f A = xs \
\<^sub>f k \\<^sub>f B" by (simp add: f_join_f_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) corollary i_join_i_shrink_iT_Plus_iT_Div_mod_subst: " \ 0 < k; I \ {}; \x\I. x mod k = 0; A = I \ (k - 1); B = I \ k \ \ (f \\<^sub>i k) \\<^sub>i A = f \
\<^sub>i k \\<^sub>i B" by (simp add: i_join_i_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) corollary i_f_join_i_shrink_iT_Plus_iT_Div_mod_subst: " \ 0 < k; finite I; \x\I. x mod k = 0; A = I \ (k - 1); B = I \ k \ \ (f \\<^sub>i k) \\<^bsub>i-f\<^esub> A= f \
\<^sub>i k \\<^bsub>i-f\<^esub> B" by (simp add: i_f_join_i_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def]) lemma f_join_f_shrink_iT_Div_mod: " \ 0 < k; \x\I. x mod k = k - 1 \ \ (xs \\<^sub>f k) \\<^sub>f I = xs \
\<^sub>f k \\<^sub>f (I \ k)" apply (case_tac "I = {}") apply (simp add: iT_Div_empty f_join_empty) apply (frule Suc_leI, drule order_le_imp_less_or_eq, erule disjE) prefer 2 apply (drule sym, simp add: iT_Div_1) apply (rule_tac t=I and s="I \- (k - 1) \ (k - 1)" in subst) apply (rule iT_Plus_neg_Plus_le_inverse) apply (rule ccontr) apply (drule_tac x="iMin I" in bspec, simp add: iMinI_ex2) apply (simp add: iMinI_ex2)+ apply (subgoal_tac "\x. x + k - Suc 0 \ I \ x mod k = 0") prefer 2 apply (rule mod_add_eq_imp_mod_0[THEN iffD1, of "k - Suc 0"]) apply (simp add: add.commute[of k]) apply (subst iT_Plus_Div_distrib_mod_less) apply (clarsimp simp: iT_Plus_neg_mem_iff) apply (simp add: iT_Plus_0) apply (rule f_join_f_shrink_iT_Plus_iT_Div_mod[unfolded One_nat_def], simp) apply (simp add: iT_Plus_neg_mem_iff) done lemma i_join_i_shrink_iT_Div_mod: " \ 0 < k; I \ {}; \x\I. x mod k = k - 1 \ \ (f \\<^sub>i k) \\<^sub>i I= f \
\<^sub>i k \\<^sub>i (I \ k)" apply (simp (no_asm) add: ilist_eq_iff, clarify) apply (simp add: i_join_nth) apply (simp add: i_shrink_nth_eq_i_last_message_hold_nth) apply (simp add: iT_Div_mod_inext_nth) apply (drule_tac x="I \ x" in bspec) apply (rule inext_nth_closed, assumption) apply (simp add: div_mult_cancel) apply (subgoal_tac "k - Suc 0 \ I \ x ") prefer 2 apply (rule order_trans[OF _ mod_le_dividend[where n=k]]) apply simp apply simp done lemma i_f_join_i_shrink_iT_Div_mod: " \ 0 < k; finite I; \x\I. x mod k = k - 1 \ \ (f \\<^sub>i k) \\<^bsub>i-f\<^esub> I = f \
\<^sub>i k \\<^bsub>i-f\<^esub> (I \ k)" apply (case_tac "I = {}") apply (simp add: iT_Plus_empty iT_Div_empty i_f_join_empty) apply (simp add: i_f_join_def) apply (simp add: iT_Div_Max) apply (simp add: i_last_message_hold_i_take[symmetric] i_shrink_i_take_mult[symmetric] add.commute[of k]) apply (simp add: div_mult_cancel) apply (subgoal_tac "k - Suc 0 \ Max I") prefer 2 apply (rule order_trans[OF _ mod_le_dividend[where n=k]]) apply simp apply (simp add: f_join_f_shrink_iT_Div_mod) done lemma f_join_f_expand_iMOD: " 0 < k \ xs \\<^sub>f k \\<^sub>f [n * k, mod k] = xs \\<^sub>f [n\]" by (subst iFROM_mult[symmetric], rule f_join_f_expand_iT_Mult) corollary f_join_f_expand_iMOD_0: " 0 < k \ xs \\<^sub>f k \\<^sub>f [0, mod k] = xs" apply (drule f_join_f_expand_iMOD[of k xs 0]) apply (simp add: iFROM_0 f_join_UNIV) done lemma f_join_f_expand_iMODb: " 0 < k \ xs \\<^sub>f k \\<^sub>f [n * k, mod k, d] = xs \\<^sub>f [n\,d]" by (subst iIN_mult[symmetric], rule f_join_f_expand_iT_Mult) corollary f_join_f_expand_iMODb_0: " 0 < k \ xs \\<^sub>f k \\<^sub>f [0, mod k, n] = xs \\<^sub>f [\n]" apply (drule f_join_f_expand_iMODb[of k xs 0 n]) apply (simp add: iIN_0_iTILL_conv) done lemma i_join_i_expand_iMOD: " 0 < k \ f \\<^sub>i k \\<^sub>i [n * k, mod k] = f \\<^sub>i [n\]" by (subst iFROM_mult[symmetric], rule i_join_i_expand_iT_Mult[OF _ iFROM_not_empty]) corollary i_join_i_expand_iMOD_0: " 0 < k \ f \\<^sub>i k \\<^sub>i [0, mod k] = f" apply (drule i_join_i_expand_iMOD[of k f 0]) apply (simp add: iFROM_0 i_join_UNIV) done lemma i_join_i_expand_iMODb: " 0 < k \ f \\<^sub>i k \\<^sub>i [n * k, mod k, d] = f \\<^sub>i [n\,d]" by (subst iIN_mult[symmetric], rule i_join_i_expand_iT_Mult[OF _ iIN_not_empty]) corollary i_join_i_expand_iMODb_0: " 0 < k \ f \\<^sub>i k \\<^sub>i [0, mod k, n] = f \\<^sub>i [\n]" apply (drule i_join_i_expand_iMODb[of k f 0 n]) apply (simp add: iIN_0_iTILL_conv) done lemma i_f_join_i_expand_iMODb: " 0 < k \ f \\<^sub>i k \\<^bsub>i-f\<^esub> [n * k, mod k, d] = f \\<^bsub>i-f\<^esub> [n\,d]" by (subst iIN_mult[symmetric], rule i_f_join_i_expand_iT_Mult[OF _ iIN_finite]) corollary i_f_join_i_expand_iMODb_0: " 0 < k \ f \\<^sub>i k \\<^bsub>i-f\<^esub> [0, mod k, n] = f \\<^bsub>i-f\<^esub> [\n]" apply (drule i_f_join_i_expand_iMODb[of k f 0 n]) apply (simp add: iIN_0_iTILL_conv) done lemma f_join_f_shrink_iMOD: " 0 < k \ (xs \\<^sub>f k) \\<^sub>f [n * k + (k - 1), mod k] = xs \
\<^sub>f k \\<^sub>f [n\]" apply (rule f_join_f_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k]"]) apply (simp add: iMOD_iff iMOD_add iMOD_div_ge)+ done corollary f_join_f_shrink_iMOD_0: " 0 < k \ (xs \\<^sub>f k) \\<^sub>f [k - 1, mod k] = xs \
\<^sub>f k" apply (frule f_join_f_shrink_iMOD[of k xs 0]) apply (simp add: iFROM_0 f_join_UNIV) done lemma f_join_f_shrink_iMODb: " 0 < k \ (xs \\<^sub>f k) \\<^sub>f [n * k + (k - 1), mod k, d] = xs \
\<^sub>f k \\<^sub>f [n\,d]" apply (rule f_join_f_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k, d]"]) apply (simp add: iMODb_iff iMODb_add iMODb_div_ge)+ done corollary f_join_f_shrink_iMODb_0: " 0 < k \ (xs \\<^sub>f k) \\<^sub>f [k - 1, mod k, n] = xs \
\<^sub>f k \\<^sub>f [\n]" apply (frule f_join_f_shrink_iMODb[of k xs 0 n]) apply (simp add: iIN_0_iTILL_conv) done lemma i_join_i_shrink_iMOD: " 0 < k \ (f \\<^sub>i k) \\<^sub>i [n * k + (k - 1), mod k] = f \
\<^sub>i k \\<^sub>i [n\]" apply (rule i_join_i_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k]"]) apply (simp add: iMOD_not_empty iMOD_iff iMOD_add iMOD_div_ge)+ done corollary i_join_i_shrink_iMOD_0: " 0 < k \ (f \\<^sub>i k) \\<^sub>i [k - 1, mod k] = f \
\<^sub>i k" apply (frule i_join_i_shrink_iMOD[of k f 0]) apply (simp add: iFROM_0 i_join_UNIV) done lemma i_f_join_i_shrink_iMODb: " 0 < k \ (f \\<^sub>i k) \\<^bsub>i-f\<^esub> [n * k + (k - 1), mod k, d] = f \
\<^sub>i k \\<^bsub>i-f\<^esub> [n\,d]" apply (rule i_f_join_i_shrink_iT_Plus_iT_Div_mod_subst[where I="[n * k, mod k, d]"]) apply (simp add: iMODb_finite iMODb_iff iMODb_add iMODb_div_ge)+ done corollary i_f_join_i_shrink_iMODb_0: " 0 < k \ (f \\<^sub>i k) \\<^bsub>i-f\<^esub> [k - 1, mod k, n] = f \
\<^sub>i k \\<^bsub>i-f\<^esub> [\n]" apply (frule i_f_join_i_shrink_iMODb[of k f 0 n]) apply (simp add: iIN_0_iTILL_conv i_join_UNIV) done subsection \Streams and temporal operators\ lemma i_shrink_eq_NoMsg_iAll_conv: " 0 < k \ ((s \
\<^sub>i k) t = \) = (\ t1 [t * k\,k - Suc 0]. s t1 = \)" apply (simp add: i_shrink_nth last_message_NoMsg_conv iAll_def Ball_def iIN_iff) apply (rule iffI) apply (clarify, rename_tac i) apply (drule_tac x="i - t * k" in spec) apply simp apply (clarify, rename_tac i) apply (drule_tac x="t * k + i" in spec) apply simp done lemma i_shrink_eq_NoMsg_iAll_conv2: " 0 < k \ ((s \
\<^sub>i k) t = \) = (\ t1 [\k - 1] \ (t * k). s t1 = \)" by (simp add: iT_add i_shrink_eq_NoMsg_iAll_conv) lemma i_shrink_eq_Msg_iEx_iAll_conv: " \ 0 < k; m \ \ \ \ ((s \
\<^sub>i k) t = m) = (\ t1 [t * k\,k - Suc 0]. s t1 = m \ (\ t2 [Suc t1\]. t2 \ t * k + k - Suc 0 \ s t2 = \))" apply (simp add: i_shrink_nth last_message_conv) apply (simp add: iAll_def iEx_def Ball_def Bex_def iIN_iff iFROM_iff) apply (rule iffI) apply (clarsimp, rename_tac i) apply (rule_tac x="t * k + i" in exI) apply (simp add: diff_add_assoc less_imp_le_pred del: add_diff_assoc) apply (clarsimp, rename_tac j) apply (drule_tac x="j - t * k" in spec) apply simp apply (clarsimp, rename_tac i) apply (rule_tac x="i - t * k" in exI) apply simp done lemma i_shrink_eq_Msg_iEx_iAll_conv2: " \ 0 < k; m \ \ \ \ ((s \
\<^sub>i k) t = m) = (\ t1 [\k - 1] \ (t * k). s t1 = m \ (\ t2 [1\] \ t1 . t2 \ t * k + k - 1 \ s t2 = \))" by (simp add: iT_add i_shrink_eq_Msg_iEx_iAll_conv) lemma i_shrink_eq_Msg_iEx_iAll_cut_greater_conv: " \ 0 < k; m \ \ \ \ ((s \
\<^sub>i k) t = m) = (\ t1 [t * k\,k - Suc 0]. s t1 = m \ (\ t2 [t * k\,k - Suc 0] \> t1. s t2 = \))" apply (simp add: i_shrink_eq_Msg_iEx_iAll_conv) apply (simp add: iIN_cut_greater iEx_def) apply (rule bex_cong2[OF subset_refl]) apply (force simp: iAll_def Ball_def iT_iff) done lemma i_shrink_eq_Msg_iEx_iAll_cut_greater_conv2: " \ 0 < k; m \ \ \ \ ((s \
\<^sub>i k) t = m) = (\ t1 [\k - 1] \ (t * k). s t1 = m \ (\ t2 ([\k - 1] \ (t * k)) \> t1. s t2 = \))" by (simp add: iT_add i_shrink_eq_Msg_iEx_iAll_cut_greater_conv) lemma i_shrink_eq_Msg_iSince_conv: " \ 0 < k; m \ \ \ \ ((s \
\<^sub>i k) t = m) = (s t2 = \. t2 \ t1 [t * k\,k - Suc 0]. s t1 = m)" by (simp add: iSince_def iIN_cut_greater i_shrink_eq_Msg_iEx_iAll_cut_greater_conv) lemma i_shrink_eq_Msg_iSince_conv2: " \ 0 < k; m \ \ \ \ ((s \
\<^sub>i k) t = m) = (s t2 = \. t2 \ t1 [\k - 1] \ (t * k). s t1 = m)" by (simp add: iT_add i_shrink_eq_Msg_iSince_conv) lemma iT_Mult_iAll_i_expand_nth_iff: "0 < k \ (\ t (I \ k). P ((f \\<^sub>i k) t)) = (\ t I. P (f t))" apply (rule iffI) apply clarify apply (drule_tac t="t * k" in ispec) apply (simp add: iT_Mult_mem_iff2) apply (simp add: i_expand_nth_mult) apply (fastforce simp: iT_Mult_mem_iff mult.commute[of k] i_expand_nth_mod_eq_0) done text \Streams and temporal operators cycle start/finish events\ lemma i_shrink_eq_NoMsg_iAll_start_event_conv: " \ 0 < k; \t. event t = (t mod k = 0); t0 = t * k \ \ ((s \
\<^sub>i k) t = \) = (s t0 = \ \ (\ t' t0 [0\]. (s t1 = \. t1 \ t2 ([0\] \ t'). event t2)))" apply (case_tac "k = Suc 0") apply (simp add: iT_add iT_not_empty iNext_True) apply (drule neq_le_trans[OF not_sym], simp) apply (simp add: i_shrink_eq_NoMsg_iAll_conv iTL_defs Ball_def Bex_def iT_add iT_iff iFROM_cut_less iFROM_inext) apply (rule iffI) apply simp apply (rule_tac x="t * k + k" in exI) apply fastforce apply (clarify elim!: dvdE, rename_tac x1 x2) apply (case_tac "x2 = Suc (t * k)") apply (simp add: mod_Suc) apply (clarsimp elim!: dvdE, rename_tac q) apply (drule_tac y=x1 in order_le_imp_less_or_eq, erule disjE) prefer 2 apply simp apply (drule_tac x=x1 in spec) apply (simp add: mult.commute[of k]) apply (drule Suc_le_lessD) apply (drule_tac y="q * k" and m=k in less_mod_eq_imp_add_divisor_le, simp) apply simp done lemma i_shrink_eq_Msg_iUntil_start_event_conv: " \ 0 < k; m \ \; \t. event t = (t mod k = 0); t0 = t * k \ \ ((s \
\<^sub>i k) t = m) = ( (s t0 = m \ (\ t' t0 [0\]. (s t1 = \. t1 \ t2 ([0\] \ t'). event t2))) \ (\ t' t0 [0\]. (\ event t1. t1 \ t2 ([0\] \ t'). ( s t2 = m \ \ event t2 \ (\ t'' t2 [0\]. (s t3 = \. t3 \ t4 ([0\] \ t''). event t4))))))" apply (case_tac "k = Suc 0") apply (simp add: iT_add iT_not_empty iNext_iff) apply (drule neq_le_trans[OF not_sym], simp) apply (simp add: i_shrink_eq_Msg_iSince_conv iTL_defs iT_add iT_cut_greater iT_cut_less Ball_def Bex_def iT_iff iFROM_inext) apply (rule_tac t="Suc (t * k + k - 2)" and s="t * k + k - Suc 0" in subst, simp) apply (rule iffI) apply (elim exE conjE, rename_tac i) apply (case_tac "i = t * k") apply (rule disjI1) apply simp apply (rule_tac x="t * k + k" in exI) apply force apply (rule disjI2) apply (rule_tac x=i in exI) apply (case_tac "i = Suc (t * k)") apply simp apply (case_tac "Suc (t * k) < t * k + k - Suc 0") apply (clarsimp simp: mod_Suc) apply (case_tac "k = Suc (Suc 0)", simp) apply simp apply (rule_tac x="t * k + k" in exI) apply force apply clarsimp apply (subgoal_tac "k = Suc (Suc 0)") prefer 2 apply simp apply (simp add: mod_Suc) apply (simp add: mult_2_right[symmetric] numeral_2_eq_2 del: mult_Suc_right) apply (rule_tac x="t * k + k" in exI) apply simp apply simp apply (subgoal_tac "Suc (t * k) \ i") prefer 2 apply (rule ccontr, simp) apply simp apply (case_tac "i < t * k + k - Suc 0") apply clarsimp apply (subgoal_tac "0 < i mod k") prefer 2 apply (simp add: mult.commute[of t]) apply (rule between_imp_mod_gr0[OF Suc_le_lessD], simp+) apply (rule conjI) apply (rule_tac x="t * k + k" in exI) apply force apply clarify apply (simp add: mult.commute[of t]) apply (rule between_imp_mod_gr0[OF Suc_le_lessD], assumption) apply simp apply clarsimp apply (subgoal_tac "Suc (Suc 0) < k") prefer 2 apply simp apply (simp add: mod_0_imp_mod_pred) apply (rule conjI, blast) apply clarify apply (simp add: mult.commute[of t]) apply (rule between_imp_mod_gr0[OF Suc_le_lessD], assumption) apply simp apply (simp add: mod_Suc) apply (erule disjE) apply (clarsimp simp: mult.commute[of k] elim!: dvdE, rename_tac i) apply (subgoal_tac "t < i") prefer 2 apply (rule ccontr) apply (simp add: linorder_not_less) apply (drule_tac i=i and k=k in mult_le_mono1) apply simp apply (rule_tac x="t * k" in exI) apply simp apply (subgoal_tac "t * k < t * k + k - Suc 0") prefer 2 apply simp apply (clarsimp, rename_tac j) apply (drule_tac x=j in spec) apply (simp add: numeral_2_eq_2 Suc_diff_Suc) apply (drule mp) apply (rule order_trans, assumption) apply (drule_tac m=t and n=i in Suc_leI) apply (drule mult_le_mono1[of "Suc t"_ k]) apply simp apply simp apply (clarsimp, rename_tac i) apply (case_tac "i = Suc (t * k)") apply (clarsimp, rename_tac i1) apply (rule_tac x="Suc (t * k)" in exI) apply simp apply (case_tac "k = Suc (Suc 0)", simp) apply (clarsimp simp: mult.commute[of k] elim!: dvdE, rename_tac q) apply (subgoal_tac "Suc (t * k) < t * k + k - Suc 0") prefer 2 apply simp apply (clarsimp elim!: dvdE, rename_tac j) apply (drule_tac x=j in spec) apply (simp add: numeral_3_eq_3 Suc_diff_Suc) apply (subgoal_tac "t * k + k \ q * k") prefer 2 apply (rule less_mod_eq_imp_add_divisor_le) apply (rule Suc_le_lessD, simp) apply simp apply simp apply (clarsimp, rename_tac i1) apply (rule_tac x=i in exI) apply (simp add: numeral_2_eq_2 Suc_diff_Suc) apply (case_tac "i1 = Suc i") apply simp apply (case_tac "Suc (i mod k) = k") apply simp apply (subgoal_tac "i \ t * k + k - Suc 0") prefer 2 apply (rule ccontr) apply (drule_tac x="t * k + k" in spec) apply (simp add: linorder_not_le) apply (drule pred_less_imp_le)+ apply clarsimp apply simp apply (drule_tac x=i in le_imp_less_or_eq, erule disjE) apply simp apply (cut_tac b="k - Suc (Suc 0)" and m=k and k=t and a="Suc 0" and n=i in between_imp_mod_between) apply (simp add: mult.commute[of k])+ apply (clarsimp elim!: dvdE)+ apply (rename_tac q) apply (simp add: mult.commute[of k]) apply (subgoal_tac "Suc t \ q") prefer 2 apply (rule Suc_leI) apply (rule mult_less_cancel2[where k=k, THEN iffD1, THEN conjunct2]) apply (rule Suc_le_lessD) apply simp apply (frule mult_le_mono1[of "Suc t" _ k]) apply (simp add: add.commute[of k]) apply (intro conjI impI allI) apply force apply (simp add: linorder_not_less) apply (case_tac "i > t * k + k") apply (drule_tac x="t * k + k" in spec) apply simp apply (case_tac "i = t * k + k", simp) apply simp done lemma i_shrink_eq_NoMsg_iAll_finish_event_conv: " \ 1 < k; \t. event t = (t mod k = k - 1); t0 = t * k \ \ ((s \
\<^sub>i k) t = \) = (s t0 = \ \ (\ t' t0 [0\]. (s t1 = \. t1 \ t2 ([0\] \ t'). (event t2 \ s t2 = \))))" apply (simp add: i_shrink_eq_NoMsg_iAll_conv iT_add) apply (unfold iTL_defs Ball_def Bex_def) apply (simp add: iT_iff div_mult_cancel iFROM_cut_less iFROM_inext) apply (subgoal_tac "t * k < t * k + k - Suc 0") prefer 2 apply simp apply (rule iffI) apply simp apply (rule_tac x="t * k + k - Suc 0" in exI) apply (simp add: mod_pred) apply (clarify, rename_tac t1) apply (drule Suc_leI[of "t * k"]) apply (drule order_le_less[THEN iffD1], erule disjE) prefer 2 apply simp apply (clarsimp simp: iIN_iff) apply (clarify, rename_tac t1 t2) apply (case_tac "t2 \ Suc (t * k)") apply (clarsimp simp: mod_Suc) apply (drule_tac s="Suc 0" in sym, drule_tac x="k - Suc 0" and f=Suc in arg_cong) apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) apply (drule_tac n=t1 in Suc_leI) apply simp apply simp apply clarsimp apply (drule_tac x=t1 in spec) apply (simp add: iIN_iff linorder_not_le) apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) prefer 2 apply simp apply (subgoal_tac "t * k + k - Suc 0 \ t2") prefer 2 apply (rule le_diff_conv[THEN iffD2]) apply (rule less_mod_eq_imp_add_divisor_le, simp) apply (simp add: mod_Suc) apply simp apply (drule_tac x="t * k + k - Suc 0" and y=t2 in order_le_imp_less_or_eq, erule disjE) prefer 2 apply (drule_tac t=t2 in sym, simp) apply (drule_tac x=t1 in order_le_imp_less_or_eq, erule disjE) apply simp+ done lemma i_shrink_eq_Msg_iUntil_finish_event_conv: " \ 1 < k; m \ \; \t. event t = (t mod k = k - 1); t0 = t * k \ \ ((s \
\<^sub>i k) t = m) = ( (\ event t1. t1 \ t2 ([0\] \ t0). event t2 \ s t2 = m) \ (\ event t1. t1 \ t2 ([0\] \ t0). (\ event t2 \ s t2 = m \ ( \ t' t2 [0\]. (s t3 = \. t3 \ t4 ([0\] \ t'). event t4 \ s t4 = \)))))" apply (simp add: i_shrink_eq_Msg_iSince_conv split del: if_split) apply (simp only: iTL_defs iT_add iT_cut_greater iT_cut_less Ball_def Bex_def iT_iff iFROM_inext) apply (subgoal_tac "t * k < t * k + k - Suc 0") prefer 2 apply simp apply (rule iffI) apply (subgoal_tac "\x. t * k \ x \ x < t * k + k - Suc 0 \ x mod k \ k - Suc 0") prefer 2 apply (rule less_imp_neq) apply (rule le_pred_imp_less, simp) apply (simp only: mult.commute[of t k]) apply (rule between_imp_mod_le[of "k - Suc 0 - Suc 0" k t]) apply (simp split del: if_split)+ apply (elim exE conjE, rename_tac t1) apply (drule_tac x=t1 in order_le_imp_less_or_eq, erule disjE) prefer 2 apply (rule disjI1) apply (rule_tac x=t1 in exI) apply (clarsimp simp add: mod_pred iIN_iff) apply (rule disjI2) apply (rule_tac x=t1 in exI) apply (simp split del: if_split) apply (rule conjI) apply (rule_tac x="t * k + k - Suc 0" in exI) apply (clarsimp simp: mod_pred iIN_iff) apply (clarsimp simp: iIN_iff) apply (erule disjE) apply (clarsimp, rename_tac t1) apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) prefer 2 apply (drule_tac t=t1 in sym, simp) apply (simp add: iIN_iff) apply (subgoal_tac "t1 \ t * k + k - Suc 0") prefer 2 apply (rule ccontr) apply (drule_tac x="t * k + k - Suc 0" in spec) apply (simp add: mod_pred) apply (frule_tac a="t * k" and b=t1 and k="k - Suc 0" and m=k in le_mod_add_eq_imp_add_mod_le[OF less_imp_le, rule_format]) apply (simp add: add.commute[of "t * k"] mod_pred) apply (rule_tac x=t1 in exI) apply simp apply (clarsimp, rename_tac t1 t2) apply (rule_tac x=t1 in exI) apply (drule_tac y=t1 in order_le_imp_less_or_eq, erule disjE) prefer 2 apply (drule_tac t=t1 in sym) apply (clarsimp simp: iIN_iff, rename_tac t3) apply (split if_split_asm) apply (subgoal_tac "t2 = Suc (t * k)") prefer 2 apply simp apply (subgoal_tac "k = Suc (Suc 0)") prefer 2 apply (simp add: mod_Suc) apply (simp add: mod_Suc) apply (simp add: iIN_iff) apply (subgoal_tac "t * k + k - Suc 0 \ t2") prefer 2 apply (rule ccontr) apply (simp add: linorder_not_le) apply (drule_tac m=t2 in less_imp_le_pred) apply (simp only: mult.commute[of t]) apply (frule_tac n=t2 in between_imp_mod_le[of "k - Suc (Suc 0)" k t _, OF diff_Suc_less, OF gr_implies_gr0]) apply simp+ apply (drule_tac x=t3 in spec) apply simp apply (drule_tac x=t3 in order_le_imp_less_or_eq) apply (drule_tac x="t * k + k - Suc 0" and y=t2 in order_le_imp_less_or_eq) apply (fastforce simp: numeral_2_eq_2 Suc_diff_Suc) apply simp apply (case_tac "Suc t1 = t2") apply (drule_tac t=t2 in sym) apply (simp add: iIN_iff numeral_2_eq_2 Suc_diff_Suc) apply (subgoal_tac "t1 \ t * k + k - Suc 0") prefer 2 apply (rule ccontr) apply (drule_tac x="t * k + k - Suc 0" in spec) apply (simp add: mod_pred) apply (intro conjI impI) apply (subgoal_tac "Suc t1 = t * k + k - Suc 0", clarsimp) apply (subgoal_tac "t * k + (k - Suc 0) \ Suc t1") prefer 2 apply (rule ccontr) apply (subgoal_tac "k - Suc 0 - Suc 0 < k") prefer 2 apply simp apply (simp only: mult.commute[of t]) apply (drule_tac n="Suc t1" in between_imp_mod_le[of "k - Suc 0 - Suc 0" k t]) apply simp_all apply (simp add: iIN_iff) apply (subgoal_tac "t1 \ t * k + k - Suc 0") prefer 2 apply (rule ccontr) apply (drule_tac x="t * k + k - Suc 0" in spec) apply (simp add: mod_pred) apply (clarsimp, rename_tac t3) apply (thin_tac "All (\x. A x \ B (x mod k))" for A B) apply (drule_tac x=t3 in spec) apply (subgoal_tac "t3 \ t2 \ s t3 = \") prefer 2 apply (drule_tac x=t3 and y=t2 in order_le_imp_less_or_eq, erule disjE) apply simp apply simp apply (drule_tac P="t3 \ t2" in meta_mp) apply (subgoal_tac "t * k < t2") prefer 2 apply (rule_tac y=t1 in less_trans, assumption+) apply (case_tac "t * k + (k - Suc 0) < t2") apply simp apply simp apply (subgoal_tac "t * k + (k - Suc 0) \ t2") prefer 2 apply (simp only: mult.commute[of t]) apply (rule mult_divisor_le_mod_ge_imp_ge) apply simp_all done end