(* Title: BDD Author: Veronika Ortner and Norbert Schirmer, 2004 Maintainer: Norbert Schirmer, norbert.schirmer at web de License: LGPL *) (* ShareReduceRepListProof.thy Copyright (C) 2004 Veronika Ortner and Norbert Schirmer Some rights reserved, TU Muenchen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) section \Proof of Procedure ShareReduceRepList\ theory ShareReduceRepListProof imports ShareRepProof begin lemma (in ShareReduceRepList_impl) ShareReduceRepList_modifies: shows "\\. \\{\} PROC ShareReduceRepList (\nodeslist) {t. t may_only_modify_globals \ in [rep]}" apply (hoare_rule HoarePartial.ProcRec1) apply (vcg spec=modifies) done lemma hd_filter_app: "\filter P xs \ []; zs=xs@ys\ \ hd (filter P zs) = hd (filter P xs)" by (induct xs arbitrary: n m) auto lemma (in ShareReduceRepList_impl) ShareReduceRepList_spec_total: defines "var_eq \ (\ns var. (\no1 \ set ns. \no2 \ set ns. no1\var = no2\var))" shows "\\ ns. \\\<^sub>t \\. List \nodeslist \next ns \ (\no \ set ns. no \ Null \ ((no\\low = Null) = (no\\high = Null)) \ no\\low \ set ns \ no\\high \ set ns \ (isLeaf_pt no \low \high = (no\\var \ 1)) \ (no\\low \ Null \ (no\\low)\\rep \ Null) \ ((\rep \ \low) no \ set ns)) \ var_eq ns \var\ PROC ShareReduceRepList (\nodeslist) \(\no. no \ set ns \ no\\<^bsup>\\<^esup>rep = no\\rep) \ (\no \ set ns. no\\rep \ Null \ (if ((\rep \ \<^bsup>\\<^esup>low) no = (\rep \ \<^bsup>\\<^esup>high) no \ no\ \<^bsup>\\<^esup>low \ Null) then (no\\rep = (\rep \ \<^bsup>\\<^esup>low) no ) else ((no\\rep) \ set ns \ no\\rep\\rep = no\\rep \ (\ no1 \ set ns. ((\rep \ \<^bsup>\\<^esup>high) no1 = (\rep \ \<^bsup>\\<^esup>high) no \ (\rep \ \<^bsup>\\<^esup>low) no1 = (\rep \ \<^bsup>\\<^esup>low) no) = (no\\rep = no1\\rep)))))\" apply (hoare_rule HoareTotal.ProcNoRec1) apply (hoare_rule anno= " \node :== \nodeslist;; WHILE (\node \ Null ) INV \\prx sfx. List \node \next sfx \ List \nodeslist \next ns \ ns=prx@sfx \ (\no \ set ns. no \ Null \ ((no\\<^bsup>\\<^esup>low = Null) = (no\\<^bsup>\\<^esup>high = Null)) \ no\\<^bsup>\\<^esup>low \ set ns \ no\\<^bsup>\\<^esup>high \ set ns \ (isLeaf_pt no \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high = (no\\<^bsup>\\<^esup>var \ 1)) \ (no\\<^bsup>\\<^esup>low \ Null \ (no\\<^bsup>\\<^esup>low)\\<^bsup>\\<^esup>rep \ Null) \ ((\<^bsup>\\<^esup>rep \ \<^bsup>\\<^esup>low) no \ set ns)) \ var_eq ns \var \ (\no. no \ set prx \ no\\<^bsup>\\<^esup>rep = no \\rep) \ (\ no \ set prx. no\\rep \ Null \ (if ((\rep \ \<^bsup>\\<^esup>low) no = (\rep \ \<^bsup>\\<^esup>high) no \ no\\<^bsup>\\<^esup>low \ Null) then (no\\rep = (\rep \ \<^bsup>\\<^esup>low) no ) else ((no\\rep)=hd (filter (\sn. repNodes_eq sn no \<^bsup>\\<^esup>low \<^bsup>\\<^esup>high \rep) prx) \ ((no\\rep)\\rep) = no\\rep \ (\no1 \ set prx. ((\rep \ \<^bsup>\\<^esup>high) no1 = (\rep \ \<^bsup>\\<^esup>high) no \ (\rep \ \<^bsup>\\<^esup>low) no1 = (\rep \ \<^bsup>\\<^esup>low) no) = (no\\rep = no1\\rep))))) \ \nodeslist= \<^bsup>\\<^esup>nodeslist \ \high=\<^bsup>\\<^esup>high \ \low=\<^bsup>\\<^esup>low \ \var=\<^bsup>\\<^esup>var\ VAR MEASURE (length (list \node \next)) DO IF (\ isLeaf_pt \node \low \high \ \node \ \low \ \rep = \node \ \high \ \rep ) THEN \node \ \rep :== \node \ \low \ \rep ELSE CALL ShareRep (\nodeslist , \node) FI;; \node :==\node \ \next OD" in HoareTotal.annotateI) apply (vcg spec=spec_total) apply (rule_tac x="[]" in exI) apply (rule_tac x="ns" in exI) using [[simp_depth_limit = 2]] apply (simp (no_asm_use)) prefer 2 using [[simp_depth_limit = 4]] apply (clarsimp) prefer 2 apply (rule conjI) apply clarify apply (rule conjI) apply (clarsimp simp add: List_list) (* termination *) apply (simp only: List_not_Null simp_thms triv_forall_equality) apply clarify apply (simp only: triv_forall_equality) apply (rename_tac sfx) apply (rule_tac x="prx@[node]" in exI) apply (rule_tac x="sfx" in exI) apply (rule conjI) apply assumption apply (rule conjI) apply (simp (no_asm)) apply (rule conjI) apply (assumption) prefer 2 apply clarify apply (simp only: List_not_Null simp_thms triv_forall_equality) apply clarify apply (simp only: triv_forall_equality) apply (rename_tac sfx) apply (rule_tac x="prx@node#sfx" in exI) (* Precondition for ShareRep *) apply (rule conjI) apply assumption apply (rule conjI) apply (rule ballI) apply (frule_tac x=no in bspec, assumption) apply (drule_tac x=node in bspec) apply (simp (no_asm_use)) apply (elim conjE) apply (rule conjI) apply assumption apply (rule conjI) apply assumption apply (unfold var_eq_def) apply (drule_tac x=node in bspec, simp) apply (drule_tac x=no in bspec,assumption) apply (simp add: isLeaf_pt_def ) apply (rule conjI) apply (simp (no_asm)) apply (clarify) apply (rule conjI) apply (subgoal_tac "List node next (node#sfx)") (* termination *) apply (simp only: List_list) apply (simp (no_asm)) apply (simp (no_asm_simp)) apply (rule_tac x="prx@[node]" in exI) apply (rule_tac x="sfx" in exI) apply (rule conjI) apply assumption apply (rule conjI) apply (simp (no_asm)) apply (rule conjI) apply (assumption) using [[simp_depth_limit = 100]] proof - (* From invariant to postcondition *) fix var low high rep nodeslist ns repa "next" no assume ns: "List nodeslist next ns" assume no_in_ns: "no \ set ns" assume while_inv: "\no\set ns. repa no \ Null \ (if (repa \ low) no = (repa \ high) no \ high no \ Null then repa no = (repa \ low) no else repa no = hd [sn\ns . repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set ns. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" assume pre: "\no\set ns. no \ Null \ (low no = Null) = (high no = Null) \ low no \ set ns \ high no \ set ns \ isLeaf_pt no low high = (var no \ Suc 0) \ (low no \ Null \ rep (low no) \ Null) \ (rep \ low) no \ set ns" assume same_var: "\no1\set ns. \no2\set ns. var no1 = var no2" assume share_case: "(repa \ low) no = (repa \ high) no \ high no = Null" assume unmodif: "\no. no \ set ns \ rep no = repa no" show "hd [sn\ns . repNodes_eq sn no low high repa] \ set ns \ repa (hd [sn\ns . repNodes_eq sn no low high repa]) = hd [sn\ns . repNodes_eq sn no low high repa]" proof - from no_in_ns pre obtain no_nNull: " no \ Null" and no_balanced: "(low no = Null) = (high no = Null)" and isLeaf_var: "isLeaf_pt no low high = (var no \ Suc 0)" by blast have repNodes_eq_same_node: "repNodes_eq no no low high repa" by (simp add: repNodes_eq_def) from no_in_ns have ns_nempty: "ns \ []" by auto from no_in_ns repNodes_eq_same_node have repNodes_not_empty: "[sn\ns . repNodes_eq sn no low high repa] \ []" by (rule filter_not_empty) then have hd_term_in_ns: "hd [sn\ns . repNodes_eq sn no low high repa] \ set ns" by (rule hd_filter_in_list) with while_inv obtain repa_hd_nNull: "repa (hd [sn\ns . repNodes_eq sn no low high repa]) \ Null" by auto let ?hd = "hd [sn\ns . repNodes_eq sn no low high repa]" from hd_term_in_ns pre obtain hd_nNull: " ?hd \ Null" and hd_balanced: "(low (hd [sn\ns . repNodes_eq sn no low high repa]) = Null) = (high (hd [sn\ns . repNodes_eq sn no low high repa]) = Null)" and hd_isLeaf_var: "isLeaf_pt (hd [sn\ns . repNodes_eq sn no low high repa]) low high = (var (hd [sn\ns . repNodes_eq sn no low high repa]) \ Suc 0)" by blast have "repa (hd [sn\ns . repNodes_eq sn no low high repa]) = hd [sn\ns . repNodes_eq sn no low high repa]" proof (cases "high no = Null") case True with no_balanced have "low no = Null" by simp with True have no_Leaf: "isLeaf_pt no low high" by (simp add: isLeaf_pt_def) with isLeaf_var have varno: "var no <= 1" by simp from same_var [rule_format, OF no_in_ns hd_term_in_ns] varno have "var (hd [sn\ns . repNodes_eq sn no low high repa]) \ 1" by simp with hd_isLeaf_var have "isLeaf_pt (hd [sn\ns . repNodes_eq sn no low high repa]) low high" by simp with while_inv hd_term_in_ns repNodes_not_empty show ?thesis apply (simp add: isLeaf_pt_def) apply (erule_tac x= "hd [sn\ns . repNodes_eq sn no low high repa]" in ballE) prefer 2 apply simp apply (simp (no_asm_use) add: repNodes_eq_def) apply (rule filter_hd_P_rep_indep) apply (simp (no_asm_simp)) apply (simp (no_asm_simp)) apply assumption done next assume hno_nNull: "high no \ Null" with share_case have repchildren_neq: "(repa \ low) no \ (repa \ high) no" by simp from repNodes_not_empty have "repNodes_eq (hd [sn\ns . repNodes_eq sn no low high repa]) no low high repa" by (rule hd_filter_prop) then have "(repa \ low) (hd [sn\ns . repNodes_eq sn no low high repa]) = (repa \ low) no \ (repa \ high) (hd [sn\ns . repNodes_eq sn no low high repa]) = (repa \ high) no" by (simp add: repNodes_eq_def) with repchildren_neq have "(repa \ low) (hd [sn\ns . repNodes_eq sn no low high repa]) \ (repa \ high) (hd [sn\ns . repNodes_eq sn no low high repa])" by simp with while_inv hd_term_in_ns repNodes_not_empty show ?thesis apply (simp add: isLeaf_pt_def) apply (erule_tac x= "hd [sn\ns . repNodes_eq sn no low high repa]" in ballE) prefer 2 apply simp apply (simp (no_asm_use) add: repNodes_eq_def) apply (rule filter_hd_P_rep_indep) apply simp apply fastforce apply fastforce done qed with hd_term_in_ns show ?thesis by simp qed next (* invariant to invariant, THEN part -- REDUCING*) fix var low high rep nodeslist repa "next" node prx sfx assume ns: "List nodeslist next (prx @ node # sfx)" assume sfx: "List (next node) next sfx" assume node_not_Null: "node \ Null" assume nodes_balanced_ordered: "\no\set (prx @ node # sfx). no \ Null \ (low no = Null) = (high no = Null) \ low no \ set (prx @ node # sfx) \ high no \ set (prx @ node # sfx) \ isLeaf_pt no low high = (var no \ (1::nat)) \ (low no \ Null \ rep (low no) \ Null) \ (rep \ low) no \ set (prx @ node # sfx)" assume all_nodes_same_var: "\no1\set (prx @ node # sfx). \no2\set (prx @ node # sfx). var no1 = var no2" assume rep_repa_nc: "\no. no \ set prx \ rep no = repa no" assume while_inv: "\no\set prx. repa no \ Null \ (if (repa \ low) no = (repa \ high) no \ low no \ Null then repa no = (repa \ low) no else repa no = hd [sn\prx . repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" assume not_Leaf: "\ isLeaf_pt node low high" assume repchildren_eq_nln: "repa (low node) = repa (high node)" show "(\no. no \ set (prx @ [node]) \ rep no = (repa(node := repa (high node))) no) \ (\no\set (prx @ [node]). (repa(node := repa (high node))) no \ Null \ (if (repa(node := repa (high node)) \ low) no = (repa(node := repa (high node)) \ high) no \ low no \ Null then (repa(node := repa (high node))) no = (repa(node := repa (high node)) \ low) no else (repa(node := repa (high node))) no = hd [sn\prx @ [node] . repNodes_eq sn no low high (repa(node := repa (high node)))] \ (repa(node := repa (high node))) ((repa(node := repa (high node))) no) = (repa(node := repa (high node))) no \ (\no1\set (prx @ [node]). ((repa(node := repa (high node)) \ high) no1 = (repa(node := repa (high node)) \ high) no \ (repa(node := repa (high node)) \ low) no1 = (repa(node := repa (high node)) \ low) no) = ((repa(node := repa (high node))) no = (repa(node := repa (high node))) no1))))" (is "?NodesUnmodif \ ?NodesModif") proof - \ \This proof was originally conducted without the substitution @{term "repa (low node) = repa (high node)"} preformed. So don't be confused if we show everythin for @{text "repa (low node)"}.\ from rep_repa_nc have nodes_unmodif: ?NodesUnmodif by auto hence rep_Sucna_nc: "(\no. no \ set (prx @ [node]) \ rep no = (repa(node := repa (low (node )))) no)" by auto have nodes_modif: ?NodesModif (is "\no\set (prx @ [node]). ?P no \ ?Q no") proof (rule ballI) fix no assume no_in_take_Sucna: " no \ set (prx @ [node])" show "?P no \ ?Q no" proof (cases "no = node") case False note no_noteq_nln=this with no_in_take_Sucna have no_in_take_n: "no \ set prx" by auto with no_in_take_n while_inv obtain repa_no_nNull: " repa no \ Null" and repa_cases: "(if (repa \ low) no = (repa \ high) no \ low no \ Null then repa no = (repa \ low) no else repa no = hd [sn\prx . repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" using [[simp_depth_limit = 2]] by auto from no_in_take_n have no_in_nodeslist: "no \ set (prx @ node # sfx)" by auto from repa_no_nNull no_noteq_nln have ext_repa_nNull: "?P no" by auto from no_in_nodeslist nodes_balanced_ordered obtain nln_nNull: "node \ Null" and nln_balanced_children: "(low node = Null) = (high node = Null)" and lnln_notin_nodeslist: "low node \ set (prx @ node # sfx)" and hnln_notin_nodeslist: "high node \ set (prx @ node # sfx)" and isLeaf_var_nln: "isLeaf_pt node low high = (var node \ 1)" and node_nNull_rap_nNull_nln: "(low node \ Null \ rep (low node) \ Null)" and nln_varrep_le_var: "(rep \ low) node \ set (prx @ node # sfx)" apply (erule_tac x="node" in ballE) apply auto done from no_in_nodeslist nodes_balanced_ordered no_in_take_Sucna obtain no_nNull: "no \ Null" and balanced_children: "(low no = Null) = (high no = Null)" and lno_notin_nodeslist: "low no \ set (prx @ node # sfx)" and hno_notin_nodeslist: "high no \ set (prx @ node # sfx)" and isLeaf_var_no: "isLeaf_pt no low high = (var no \ 1)" and node_nNull_rep_nNull: "(low no \ Null \ rep (low no) \ Null)" and varrep_le_var: "(rep \ low) no \ set (prx @ node # sfx)" apply - apply (erule_tac x=no in ballE) apply auto done from lno_notin_nodeslist have ext_rep_null_comp_low: "(repa (node := repa (low node)) \ low) no = (repa \ low) no" by (auto simp add: null_comp_def) from hno_notin_nodeslist have ext_rep_null_comp_high: "(repa (node := repa (low node)) \ high) no = (repa \ high) no" by (auto simp add: null_comp_def) have share_reduce_if: "?Q no" proof (cases "(repa (node := repa (low node)) \ low) no = (repa(node := repa (low node)) \ high) no \ low no \ Null") case True then obtain red_case: "(repa (node := repa (low node)) \ low) no = (repa(node := repa (low node)) \ high) no" and lno_nNull: "low no \ Null" by simp from lno_nNull balanced_children have hno_nNull: "high no \ Null" by simp from True ext_rep_null_comp_low ext_rep_null_comp_high have repchildren_eq_no: "(repa \ low) no = (repa \ high) no" by simp with repa_cases lno_nNull have "repa no = (repa \ low) no" by auto with ext_rep_null_comp_low no_noteq_nln have "(repa(node := repa (low node))) no = (repa (node := repa (low node)) \ low) no" by simp with True repchildren_eq_nln show ?thesis by auto next assume share_case_ext: " \ ((repa(node := repa (low node)) \ low) no = (repa(node := repa (low node)) \ high) no \ low no \ Null)" from not_Leaf isLeaf_var_nln have "1 < var node" by simp with all_nodes_same_var have all_nodes_nl_Suc0_l_var: "\x \ set (prx @ node # sfx). 1 < var x" using [[simp_depth_limit=1]] by auto with nodes_balanced_ordered have all_nodes_nl_noLeaf: "\x \ set (prx @ node # sfx). \ isLeaf_pt x low high" apply - apply rule apply (drule_tac x=x in bspec,assumption) apply (drule_tac x=x in bspec,assumption) apply auto done from nodes_balanced_ordered have all_nodes_nl_balanced: "\x \ set (prx @ node # sfx). (low x = Null) = (high x = Null)" apply - apply rule apply (drule_tac x=x in bspec,assumption) apply auto done from all_nodes_nl_Suc0_l_var no_in_nodeslist have Suc0_l_var_no: "1 < var no" by auto with isLeaf_var_no have no_nLeaf: " \ isLeaf_pt no low high" by simp with balanced_children have lno_nNull: "low no \ Null" by (simp add: isLeaf_pt_def) with balanced_children have hno_nNull: "high no \ Null" by simp with share_case_ext ext_rep_null_comp_low ext_rep_null_comp_high lno_nNull have repchildren_neq_no: "(repa \ low) no \ (repa \ high) no" by (simp add: null_comp_def) with repa_cases have share_case_inv: "repa no = hd [sn\prx . repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1))" by auto then have repa_no: "repa no = hd [sn\prx . repNodes_eq sn no low high repa]" by simp from Suc0_l_var_no have "\x \ set (prx @ node # sfx). 1 < var no" by auto from no_in_take_n have "[sn\prx . repNodes_eq sn no low high repa] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have "repNodes_eq (hd [sn\prx. repNodes_eq sn no low high repa]) no low high repa" by (rule hd_filter_prop) with repa_no have rep_children_eq_no_repa_no: "(repa \ low) (repa no) = (repa \ low) no \ (repa \ high) (repa no) = (repa \ high) no" by (simp add: repNodes_eq_def) from lno_notin_nodeslist rep_repa_nc have rep_repa_nc_low_no: "rep (low no) = repa (low no)" apply - apply (erule_tac x="low no" in allE) apply auto done have "\x \ set (prx @ [node]). repNodes_eq x no low high (repa(node := repa (low node))) = repNodes_eq x no low high repa" proof (rule ballI, unfold repNodes_eq_def) fix x assume x_in_take_Sucn: " x \ set (prx @ [node])" hence x_in_nodeslist: "x \ set (prx @ node # sfx)" by auto with all_nodes_nl_noLeaf nodes_balanced_ordered have children_nNull_x: "low x \ Null \ high x \ Null" apply - apply (drule_tac x=x in bspec,assumption) apply (drule_tac x=x in bspec,assumption) apply (auto simp add: isLeaf_pt_def) done from x_in_nodeslist nodes_balanced_ordered have "low x \ set (prx @ node # sfx) \ high x \ set (prx @ node # sfx)" apply - apply (drule_tac x=x in bspec,assumption) apply auto done with lno_notin_nodeslist hno_notin_nodeslist children_nNull_x lno_nNull hno_nNull show "((repa(node := repa (low node)) \ high) x = (repa(node := repa (low node)) \ high) no \ (repa(node := repa (low node)) \ low) x = (repa(node := repa (low node)) \ low) no) = ((repa \ high) x = (repa \ high) no \ (repa \ low) x = (repa \ low) no)" by (simp add: null_comp_def) qed then have filter_extrep_rep: "[sn\(prx @ [node]). repNodes_eq sn no low high (repa(node := repa (low node)))] = [sn\(prx @ [node]) . repNodes_eq sn no low high repa]" by (rule P_eq_list_filter) from no_in_take_n have filter_n_notempty: "[sn\prx. repNodes_eq sn no low high repa] \ []" apply (rule filter_not_empty) apply (simp add: repNodes_eq_def) done then have "hd [sn\prx. repNodes_eq sn no low high repa] = hd [sn\prx@[node]. repNodes_eq sn no low high repa]" by auto with no_noteq_nln filter_extrep_rep repa_no have ext_repa_no: "(repa(node:= repa (low node))) no = hd [sn\prx@[node] . repNodes_eq sn no low high (repa(node := repa (low node)))]" by simp have "(repa(node := repa (low node))) (repa no) = repa no" proof (cases "repa no = node") case True note rno_nln=this from rep_repa_nc_low_no rep_children_eq_no_repa_no lno_nNull node_nNull_rep_nNull have low_rep_no_nNull: "low (repa no) \ Null" apply (simp add: null_comp_def) apply auto done with nodes_balanced_ordered rno_nln have high_rap_no_nNull: "high (repa no) \ Null" apply - apply (drule_tac x="repa no" in bspec) apply auto done with low_rep_no_nNull rno_nln rep_children_eq_no_repa_no have "repa (low node) = (repa \ low) no \ repa (high node) = (repa \ high) no" by (simp add: null_comp_def) with repchildren_eq_nln have " (repa \ low) no = (repa \ high) no" by simp with repchildren_neq_no show ?thesis by simp next assume rno_not_nln: "repa no \ node" from share_case_inv have "repa (repa no) = repa no" by auto with rno_not_nln show ?thesis by simp qed with no_noteq_nln have ext_repa_ext_repa: "(repa(node := repa (low node))) ((repa(node := repa (low node))) no) = (repa(node := repa (low node))) no" by simp have "(\no1\set (prx@[node]). ((repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no \ (repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no) = ((repa(node := repa (low node))) no = (repa(node := repa (low node))) no1))" proof (rule ballI) fix no1 assume no1_in_take_Sucn: " no1 \ set (prx@[node])" hence no1_in_nodeslist: "no1 \ set (prx @ node # sfx)" by auto show "((repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no \ (repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no) = ((repa(node := repa (low node))) no = (repa(node := repa (low node))) no1)" proof (cases "no1 = node") case True show ?thesis proof (rule, elim conjE) assume ext_repa_no_no1: "(repa(node := repa (low node))) no = (repa(node := repa (low node))) no1" with True no_noteq_nln have repa_no_repa_low_nln: "repa no = repa (low node)" by simp from filter_n_notempty have repa_no_in_take_n: "hd [sn\prx. repNodes_eq sn no low high repa] \ set prx " apply - apply (rule hd_filter_in_list) apply auto done with repa_no have repa_no_in_nodeslist: "repa no \ set (prx @ node # sfx)" by auto from lnln_notin_nodeslist rep_repa_nc have rep_repa_low_nln: "rep (low node) = repa (low node)" by auto from all_nodes_nl_noLeaf nln_balanced_children have "low node \ Null" by (auto simp add: isLeaf_pt_def) with rep_repa_low_nln lnln_notin_nodeslist lno_nNull nln_varrep_le_var have "repa (low node) \ set (prx @ node # sfx)" by (simp add: null_comp_def) with repa_no_repa_low_nln repa_no_in_nodeslist show "(repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no \ (repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no" by simp next assume no_no1_high: "(repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no" assume no_no1_low: "(repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no" from True repchildren_eq_nln have repachildren_eq_no1: " repa (low no1) = repa (high no1)" by simp from not_Leaf True nln_balanced_children have children_nNull_no1: "(low no1) \ Null \ high no1 \ Null" by (simp add: isLeaf_pt_def) with repachildren_eq_no1 have repchildren_eq_no1: "(repa \ low) no1 = (repa \ high) no1" by (simp add: null_comp_def) from no_no1_low children_nNull_no1 lno_nNull lnln_notin_nodeslist lno_notin_nodeslist True have rep_low_eq_no_no1: "(repa \ low) no1 = (repa \ low) no" by (simp add: null_comp_def) from no_no1_high children_nNull_no1 hno_nNull hnln_notin_nodeslist hno_notin_nodeslist True have rep_high_eq_no_no1: "(repa \ high) no1 = (repa \ high) no" by (simp add: null_comp_def) with rep_low_eq_no_no1 repchildren_eq_no1 have "(repa \ low) no = (repa \ high) no" by simp with repchildren_neq_no show "(repa(node := repa (low node))) no = (repa(node := repa (low node))) no1" by simp qed next assume no1_neq_nln: "no1 \ node" from no1_in_nodeslist nodes_balanced_ordered have children_notin_nl_no1: "low no1 \ set (prx @ node # sfx) \ high no1 \ set (prx @ node # sfx)" apply - apply (drule_tac x=no1 in bspec,assumption) by auto from no1_neq_nln no1_in_take_Sucn have no1_in_take_n: "no1 \ set prx" by auto from no1_in_nodeslist all_nodes_nl_noLeaf all_nodes_nl_balanced have children_nNull_no1: "(low no1) \ Null \ high no1 \ Null" by (auto simp add: isLeaf_pt_def) show ?thesis proof (rule, elim conjE) assume ext_repa_high_no1_no: "(repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no" assume ext_repa_low_no1_no: "(repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no" from children_nNull_no1 hno_nNull ext_repa_high_no1_no children_notin_nl_no1 hno_notin_nodeslist have repa_high_no1_no: "(repa \ high) no1 = (repa \ high) no" by (simp add: null_comp_def) from children_nNull_no1 lno_nNull ext_repa_low_no1_no children_notin_nl_no1 lno_notin_nodeslist have repa_low_no1_no: "(repa \ low) no1 = (repa \ low) no" by (simp add: null_comp_def) from repchildren_neq_no repa_high_no1_no repa_low_no1_no have "(repa \ low) no1 \ (repa \ high) no1" by simp from no1_in_take_n share_case_inv repa_high_no1_no repa_low_no1_no have "repa no = repa no1" by auto with no_noteq_nln no1_neq_nln show " (repa(node := repa (low node))) no = (repa(node := repa (low node))) no1" by simp next assume "(repa(node := repa (low node))) no = (repa(node := repa (low node))) no1" with no_noteq_nln no1_neq_nln have "repa no = repa no1" by simp with share_case_inv no1_in_take_n have "((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no)" by auto with children_notin_nl_no1 children_nNull_no1 lno_notin_nodeslist hno_notin_nodeslist lno_nNull hno_nNull show "(repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no \ (repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no" by (auto simp add: null_comp_def) qed qed qed from ext_repa_ext_repa ext_repa_no share_case_ext repchildren_eq_nln this show ?thesis using [[simp_depth_limit=4]] by auto qed with ext_repa_nNull show ?thesis by auto next assume no_nln: "no = node" hence no_in_nodeslist: "no \ set (prx @ node # sfx)" by simp from no_nln not_Leaf no_in_nodeslist nodes_balanced_ordered [rule_format, OF this] obtain low_no_nNull: "low no \ Null" and high_no_nNull: "high no \ Null" and rep_low_no_nNull: "rep (low no) \ Null" and lno_notin_nl: "low no \ set (prx @ node # sfx)" and hno_notin_nl: "high no \ set (prx @ node # sfx)" and children_nNull_no: "(low no \ Null) \ (high no \ Null)" apply (unfold isLeaf_pt_def) apply blast done then have "low no \ set prx" by auto with rep_repa_nc no_nln rep_low_no_nNull have "(repa(node := repa (low node))) no \ Null" by simp moreover have "(if (repa(node := repa (low node)) \ low) no = (repa(node := repa (low node)) \ high) no \ low no \ Null then (repa(node := repa (low node))) no = (repa(node := repa (low node)) \ low) no else (repa(node := repa (low node))) no = hd [sn\prx@[node]. repNodes_eq sn no low high (repa(node := repa (low node)))] \ (repa(node := repa (low node))) ((repa(node := repa (low node))) no) = (repa(node := repa (low node))) no \ (\no1\set (prx@[node]). ((repa(node := repa (low node)) \ high) no1 = (repa(node := repa (low node)) \ high) no \ (repa(node := repa (low node)) \ low) no1 = (repa(node := repa (low node)) \ low) no) = ((repa(node := repa (low node))) no = (repa(node := repa (low node))) no1)))" proof (cases "(repa(node := repa (low node)) \ low) no = (repa(node := repa (low node)) \ high) no \ low no \ Null") case True note red_case=this with children_nNull_no lno_notin_nl hno_notin_nl have "(repa \ low) no = (repa \ high) no" by (auto simp add: null_comp_def) from children_nNull_no lno_notin_nl have ext_repa_eq_repa_low: "(repa(node := repa (low node)) \ low) no = (repa \ low) no " by (auto simp add: null_comp_def) from children_nNull_no hno_notin_nl have ext_repa_eq_repa_high: "(repa(node := repa (low node)) \ high) no = (repa \ high) no " by (auto simp add: null_comp_def) from no_nln children_nNull_no have "repa (low node) = (repa \ low) no" by (simp add: null_comp_def) with red_case ext_repa_eq_repa_high ext_repa_eq_repa_low no_nln show ?thesis using [[simp_depth_limit=2]] by (auto simp del: null_comp_not_Null) next assume share_case: " \ ((repa(node := repa (low node)) \ low) no = (repa(node := repa (low node)) \ high) no \ low no \ Null)" with low_no_nNull have "(repa(node := repa (low node)) \ low) no \ (repa(node := repa (low node)) \ high) no" by simp with children_nNull_no lno_notin_nl hno_notin_nl have "(repa \ low) no \ (repa \ high) no" by (auto simp add: null_comp_def) with children_nNull_no have "repa (low no) \ repa (high no)" by (simp add: null_comp_def) with repchildren_eq_nln no_nln show ?thesis by simp qed ultimately show ?thesis using repchildren_eq_nln apply - apply (simp only:) apply (simp (no_asm)) done qed qed from nodes_unmodif nodes_modif show ?thesis by iprover qed next fix var low high rep nodeslist repa "next" node prx sfx repb assume ns: "List nodeslist next (prx @ node # sfx)" assume sfx: "List (next node) next sfx" assume nodes_balanced_ordered: "\no\set (prx @ node # sfx). no \ Null \ (low no = Null) = (high no = Null) \ low no \ set (prx @ node # sfx) \ high no \ set (prx @ node # sfx) \ isLeaf_pt no low high = (var no \ (1::nat)) \ (low no \ Null \ rep (low no) \ Null) \ (rep \ low) no \ set (prx @ node # sfx)" assume all_nodes_same_var: "\no1\set (prx @ node # sfx). \no2\set (prx @ node # sfx). var no1 = var no2" assume rep_repa_nc: "\no. no \ set prx \ rep no = repa no" assume while_inv: "\no\set prx. repa no \ Null \ (if (repa \ low) no = (repa \ high) no \ low no \ Null then repa no = (repa \ low) no else repa no = hd [sn\prx . repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" assume share_cond: "\ (\ isLeaf_pt node low high \ repa (low node) = repa (high node))" assume repb_node: "repb node = hd [sn\prx @ node # sfx . repNodes_eq sn node low high repa]" assume repa_repb_nc: "\pt. pt \ node \ repa pt = repb pt" assume var_repb_node: "var (repb node) = var node" show "(\no. no \ set (prx @ [node]) \ rep no = repb no) \ (\no\set (prx @ [node]). repb no \ Null \ (if (repb \ low) no = (repb \ high) no \ low no \ Null then repb no = (repb \ low) no else repb no = hd [sn\prx @ [node] . repNodes_eq sn no low high repb] \ repb (repb no) = repb no \ (\no1\set (prx @ [node]). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1))))" proof - have rep_repb_nc: "(\no. no \ set (prx @ [node]) \ rep no = repb no)" proof (intro allI impI) fix no assume no_notin_take_Sucn: "no \ set (prx @ [node])" with rep_repa_nc have rep_repa_nc_Sucn: "rep no = repa no" by auto from no_notin_take_Sucn have "no \ node" by auto with repa_repb_nc have "repa no = repb no" by auto with rep_repa_nc_Sucn show "rep no = repb no" by simp qed moreover have repb_no_share_def: "(\no\set (prx @ [node]). \ ((repb \ low) no = (repb \ high) no \ low no \ Null) \ repb no = hd [sn\(prx @ [node]) . repNodes_eq sn no low high repb])" proof (intro ballI impI) fix no assume no_in_take_Sucn: " no \ set (prx @ [node])" assume share_prop: "\ ((repb \ low) no = (repb \ high) no \ low no \ Null)" from share_prop have share_or: "(repb \ low) no \ (repb \ high) no \ low no = Null" using [[simp_depth_limit=2]] by simp from no_in_take_Sucn have no_in_nl: "no \ set (prx @ node # sfx)" by auto from nodes_balanced_ordered [rule_format, OF this] obtain no_nNull: "no \ Null" and balanced_no: "(low no = Null) = (high no = Null)" and lno_notin_nl: "low no \ set (prx @ node # sfx)" and hno_notin_nl: "high no \ set (prx @ node # sfx)" and isLeaf_var_no: "isLeaf_pt no low high = (var no \ 1)" by auto have nodes_notin_nl_neq_nln: "\p. p \ set (prx @ node # sfx) \ p \ node " by auto show " repb no = hd [sn\(prx @ [node]). repNodes_eq sn no low high repb]" proof (cases "no = node") case False note no_notin_nl=this with no_in_take_Sucn have no_in_take_n: "no \ set prx" by auto from False repa_repb_nc have repb_repa_no: "repb no = repa no" by auto with while_inv [rule_format, OF no_in_take_n] no_in_take_n obtain repa_no_nNull: "repa no \ Null" and while_share_red_exp: "(if (repa \ low) no = (repa \ high) no \ low no \ Null then repa no = (repa \ low) no else repa no = hd [sn\prx . repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" using [[simp_depth_limit = 2]] by auto from no_in_take_n have filter_take_n_notempty: "[sn\prx. repNodes_eq sn no low high repa] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have hd_term_n_Sucn: "hd [sn\prx. repNodes_eq sn no low high repa] = hd [sn\prx@[node] . repNodes_eq sn no low high repa]" by auto thus ?thesis proof (cases "low no = Null") case True note lno_Null=this with balanced_no have hno_Null: "high no = Null" by simp from lno_Null hno_Null have isLeaf_no: "isLeaf_pt no low high" by (simp add: isLeaf_pt_def) from True while_share_red_exp have while_low_Null: "repa no = hd [sn\prx. repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1))" by auto have all_nodes_in_nl_Leafs: "\x \ set (prx @ node # sfx). isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nodeslist: "x \ set (prx @ node # sfx)" from isLeaf_no isLeaf_var_no have "var no \ 1" by simp with all_nodes_same_var [rule_format, OF x_in_nodeslist no_in_nl] have "var x \ 1" by simp with nodes_balanced_ordered [rule_format, OF x_in_nodeslist] show "isLeaf_pt x low high" by (auto simp add: isLeaf_pt_def) qed have "\ x \ set (prx@[node]). repNodes_eq x no low high repb = repNodes_eq x no low high repa" proof (rule ballI) fix x assume x_in_take_Sucn: "x \ set (prx@[node])" hence x_in_nodeslist: "x \ set (prx @ node # sfx)" by auto with all_nodes_in_nl_Leafs have "isLeaf_pt x low high" by auto with isLeaf_no repa_repb_nc show "repNodes_eq x no low high repb = repNodes_eq x no low high repa" by (simp add: repNodes_eq_def null_comp_def isLeaf_pt_def) qed then have " [sn\(prx@[node]). repNodes_eq sn no low high repa] = [sn\(prx@[node]) . repNodes_eq sn no low high repb]" apply - apply (rule P_eq_list_filter) apply simp done with hd_term_n_Sucn while_low_Null repb_repa_no show ?thesis by auto next assume lno_nNull: " low no \ Null" with balanced_no have hno_nNull: "high no \ Null" by simp with lno_nNull have no_nLeaf: "\ isLeaf_pt no low high" by (simp add: isLeaf_pt_def) with isLeaf_var_no have Sucn_s_varno: "1 < var no" by auto with no_in_nl all_nodes_same_var have all_nodes_nl_var: "\ x \ set (prx @ node # sfx). 1 < var x" apply - apply (rule ballI) apply (drule_tac x=no in bspec,assumption) apply (drule_tac x=x in bspec,assumption) apply auto done with nodes_balanced_ordered have all_nodes_nl_nLeaf: "\x \ set (prx @ node # sfx). \ isLeaf_pt x low high" apply - apply (rule ballI) apply (drule_tac x=x in bspec,assumption) apply (drule_tac x=x in bspec,assumption) apply auto done from lno_nNull share_or have repbchildren_eq_no: "(repb \ low) no \ (repb \ high) no" by simp with lno_nNull hno_nNull lno_notin_nl hno_notin_nl repa_repb_nc nodes_notin_nl_neq_nln have repachildren_eq_no: "(repa \ low) no \ (repa \ high) no" using [[simp_depth_limit=2]] by (simp add: null_comp_def) with while_share_red_exp have repa_no_def: "repa no = hd [sn\prx . repNodes_eq sn no low high repa] " by auto with no_notin_nl repa_repb_nc have "repb no = hd [sn\prx. repNodes_eq sn no low high repa] " by simp with hd_term_n_Sucn have repb_no_hd_term_repa: "repb no = hd [sn\prx@[node] . repNodes_eq sn no low high repa] " by simp have "\x \ set (prx@[node]). repNodes_eq x no low high repa = repNodes_eq x no low high repb" proof (intro ballI) fix x assume x_in_take_Sucn: "x \ set (prx@[node]) " hence x_in_nodeslist: "x \ set (prx @ node # sfx)" by auto with all_nodes_nl_nLeaf have x_nLeaf: "\ isLeaf_pt x low high" by auto from nodes_balanced_ordered [rule_format, OF x_in_nodeslist] obtain balanced_x: "(low x = Null) = (high x = Null)" and lx_notin_nl: "low x \ set (prx @ node # sfx)" and hx_notin_nl: "high x \ set (prx @ node # sfx)" by auto with nodes_notin_nl_neq_nln lno_notin_nl hno_notin_nl lno_nNull hno_nNull repa_repb_nc show " repNodes_eq x no low high repa = repNodes_eq x no low high repb" by (simp add: repNodes_eq_def null_comp_def) qed then have " [sn\(prx@[node]). repNodes_eq sn no low high repa] = [sn\(prx@[node]). repNodes_eq sn no low high repb]" apply - apply (rule P_eq_list_filter) apply auto done with repb_no_hd_term_repa show ?thesis by simp qed next assume no_nln: "no = node" with repb_node have repb_no_def: "repb no = hd [sn\(prx @ node # sfx). repNodes_eq sn node low high repa]" by simp show ?thesis proof (cases "isLeaf_pt no low high") case True note isLeaf_no=this have "\x \ set (prx @ node # sfx). repNodes_eq x no low high repb = repNodes_eq x no low high repa" proof (rule ballI) fix x assume x_in_nodeslist: "x \ set (prx @ node # sfx)" have all_nodes_in_nl_Leafs: "\x \ set (prx @ node # sfx). isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nodeslist: " x \ set (prx @ node # sfx)" from isLeaf_no isLeaf_var_no have "var no \ 1" by simp with all_nodes_same_var [rule_format, OF x_in_nodeslist no_in_nl] have "var x \ 1" by simp with nodes_balanced_ordered [rule_format, OF x_in_nodeslist] show "isLeaf_pt x low high" by (auto simp add: isLeaf_pt_def) qed with x_in_nodeslist have "isLeaf_pt x low high" by auto with isLeaf_no repa_repb_nc show "repNodes_eq x no low high repb = repNodes_eq x no low high repa" by (simp add: repNodes_eq_def null_comp_def isLeaf_pt_def) qed with repb_no_def no_nln have repb_no_whole_nl: "repb no = hd [sn\ (prx @ node # sfx). repNodes_eq sn node low high repb]" apply - apply (subgoal_tac "[sn\ (prx@node#sfx). repNodes_eq sn node low high repa] = [sn\(prx @ node # sfx) . repNodes_eq sn node low high repb]") apply simp apply (rule P_eq_list_filter) apply auto done from no_in_take_Sucn no_nln have "[sn\ (prx@[node]). repNodes_eq sn node low high repb] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have "hd [sn\(prx@[node]). repNodes_eq sn node low high repb] = hd [sn\(prx @ node # sfx). repNodes_eq sn node low high repb]" apply - apply (rule hd_filter_app [symmetric]) apply auto done with repb_no_whole_nl no_nln show ?thesis by simp next assume no_nLeaf: " \ isLeaf_pt no low high" with share_or balanced_no have "(repb \ low) no \ (repb \ high) no" using [[simp_depth_limit=2]] by (simp add: isLeaf_pt_def) from no_nLeaf share_cond no_nln have "repa (low no) \ repa (high no)" by auto with no_nLeaf balanced_no have "(repa \ low) no \ (repa \ high) no " by (simp add: null_comp_def isLeaf_pt_def) have "\ x \ set (prx@node#sfx). repNodes_eq x no low high repb = repNodes_eq x no low high repa" proof (rule ballI) fix x assume x_in_nodeslist: " x \ set (prx@node#sfx)" have all_nodes_in_nl_Leafs: "\x \ set (prx@node#sfx). \ isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nodeslist: " x \ set (prx@node#sfx)" from no_nLeaf isLeaf_var_no have "1 < var no " by simp with all_nodes_same_var [rule_format, OF x_in_nodeslist no_in_nl] have "1 < var x" by auto with nodes_balanced_ordered [rule_format, OF x_in_nodeslist] show "\ isLeaf_pt x low high" apply (unfold isLeaf_pt_def) apply fastforce done qed with x_in_nodeslist have x_nLeaf: "\ isLeaf_pt x low high" by auto from nodes_balanced_ordered [rule_format, OF x_in_nodeslist] have "(low x = Null) = (high x = Null) \ low x \ set (prx@node#sfx) \ high x \ set (prx@node#sfx)" by auto with x_nLeaf balanced_no no_nLeaf repa_repb_nc nodes_notin_nl_neq_nln lno_notin_nl hno_notin_nl show "repNodes_eq x no low high repb = repNodes_eq x no low high repa" using [[simp_depth_limit=2]] by (simp add: repNodes_eq_def null_comp_def isLeaf_pt_def) qed with repb_no_def no_nln have repb_no_whole_nl: "repb no = hd [sn\(prx@node#sfx). repNodes_eq sn node low high repb]" apply - apply (subgoal_tac "[sn\(prx@node#sfx). repNodes_eq sn node low high repa] = [sn\(prx@node#sfx). repNodes_eq sn node low high repb]") apply simp apply (rule P_eq_list_filter) apply auto done from no_in_take_Sucn no_nln have "[sn\(prx@[node]) . repNodes_eq sn node low high repb] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have "hd [sn\ (prx@[node]) . repNodes_eq sn node low high repb] = hd [sn\(prx@node#sfx) . repNodes_eq sn node low high repb]" apply - apply (rule hd_filter_app [symmetric]) apply auto done with repb_no_whole_nl no_nln show ?thesis by simp qed qed qed have repb_no_red_def: "(\no\set (prx@[node]).(repb \ low) no = (repb \ high) no \ low no \ Null \ repb no = (repb \ low) no)" proof (intro ballI impI) fix no assume no_in_take_Sucn: "no \ set (prx@[node])" assume red_cond_no: " (repb \ low) no = (repb \ high) no \ low no \ Null" from no_in_take_Sucn have no_in_nl: "no \ set (prx@node#sfx)" by auto from nodes_balanced_ordered [rule_format, OF this]obtain no_nNull: "no \ Null" and balanced_no: "(low no = Null) = (high no = Null)" and lno_notin_nl: "low no \ set (prx@node#sfx)" and hno_notin_nl: "high no \ set (prx@node#sfx)" and isLeaf_var_no: "isLeaf_pt no low high = (var no \ 1)" by auto have nodes_notin_nl_neq_nln: "\ p. p \ set (prx@node#sfx) \ p \ node" by auto show " repb no = (repb \ low) no" proof (cases "no = node") case False note no_notin_nl=this with no_in_take_Sucn have no_in_take_n: "no \ set prx" by auto from False repa_repb_nc have repb_repa_no: "repb no = repa no" by auto with while_inv [rule_format, OF no_in_take_n] obtain repa_no_nNull: "repa no \ Null" and while_share_red_exp: "(if (repa \ low) no = (repa \ high) no \ low no \ Null then repa no = (repa \ low) no else repa no = hd [sn\prx. repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" using [[simp_depth_limit=2]] by auto from red_cond_no nodes_notin_nl_neq_nln lno_notin_nl hno_notin_nl while_share_red_exp balanced_no repa_repb_nc have red_repa_no: "repa no = (repa \ low) no" by (auto simp add: null_comp_def) from red_cond_no nodes_notin_nl_neq_nln lno_notin_nl repa_repb_nc have "(repb \ low) no = (repa \ low) no" by (auto simp add: null_comp_def) with red_repa_no no_notin_nl balanced_no repa_repb_nc have "repb no = (repb \ low) no" by auto with red_cond_no show ?thesis by auto next assume "no = node" with share_cond have share_cond_pre: "isLeaf_pt no low high \ repa (low no) \ repa (high no)" by simp show ?thesis proof (cases "isLeaf_pt no low high") case True with red_cond_no show ?thesis by (simp add: isLeaf_pt_def) next assume no_nLeaf: "\ isLeaf_pt no low high" with share_cond_pre have "repa (low no) \ repa (high no)" by simp with no_nLeaf lno_notin_nl hno_notin_nl nodes_notin_nl_neq_nln balanced_no repa_repb_nc have "repb (low no) \ repb (high no)" using [[simp_depth_limit=2]] by (auto simp add: isLeaf_pt_def) with no_nLeaf balanced_no have "(repb \ low) no \ (repb \ high) no" by (simp add: null_comp_def isLeaf_pt_def) with red_cond_no show ?thesis by simp qed qed qed have while_while: "(\no\set (prx@[node]). repb no \ Null \ (if (repb \ low) no = (repb \ high) no \ low no \ Null then repb no = (repb \ low) no else repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb] \ repb (repb no) = repb no \ (\no1\set ((prx@[node])). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1))))" (is "\no\set (prx@[node]). ?P no \ ?Q no") proof (intro ballI) fix no assume no_in_take_Sucn: "no \ set (prx@[node])" hence no_in_nl: "no \ set (prx@node#sfx)" by auto from nodes_balanced_ordered [rule_format, OF this] obtain no_nNull: "no \ Null" and balanced_no: "(low no = Null) = (high no = Null)" and lno_notin_nl: "low no \ set (prx@node#sfx)" and hno_notin_nl: "high no \ set (prx@node#sfx)" and isLeaf_var_no: "isLeaf_pt no low high = (var no \ 1)" by auto from no_in_take_Sucn have filter_take_Sucn_not_empty: "[sn\(prx@[node]). repNodes_eq sn no low high repb] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have hd_filter_Sucn_in_Sucn: "hd [sn\(prx@[node]). repNodes_eq sn no low high repb] \ set (prx@[node])" by (rule hd_filter_in_list) have nodes_notin_nl_neq_nln: "\p. p \ set (prx@node#sfx) \ p \ node" by auto show "?P no \ ?Q no" proof (cases "no = node") case False note no_notin_nl=this with no_in_take_Sucn have no_in_take_n: "no \ set prx" by auto from False repa_repb_nc have repb_repa_no: "repb no = repa no" by auto with while_inv [rule_format, OF no_in_take_n] obtain repa_no_nNull: "repa no \ Null" and while_share_red_exp: "(if (repa \ low) no = (repa \ high) no \ low no \ Null then repa no = (repa \ low) no else repa no = hd [sn\prx. repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)))" using [[simp_depth_limit=2]] by auto from repb_repa_no repa_no_nNull have repb_no_nNull: "?P no" by simp have "?Q no" proof (cases "(repb \ low) no = (repb \ high) no \ low no \ Null") case True with no_in_take_Sucn repb_no_red_def show ?thesis by auto next assume share_case_repb: " \ ((repb \ low) no = (repb \ high) no \ low no \ Null)" with repb_no_share_def no_in_take_Sucn have repb_no_def: "repb no = hd [sn\ (prx@[node]). repNodes_eq sn no low high repb]" by auto with share_case_repb have "(repb \ low) no \ (repb \ high) no \ low no = Null" using [[simp_depth_limit=2]] by simp thus ?thesis proof (cases "low no = Null") case True note lno_Null=this with balanced_no have hno_Null: "high no = Null" by simp from lno_Null hno_Null have isLeaf_no: "isLeaf_pt no low high" by (simp add: isLeaf_pt_def) from True while_share_red_exp have while_low_Null: "repa no = hd [sn\prx. repNodes_eq sn no low high repa] \ repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1))" by auto from no_in_take_n have "[sn\prx. repNodes_eq sn no low high repa] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have hd_term_n_Sucn: "hd [sn\prx. repNodes_eq sn no low high repa] = hd [sn\(prx@[node]) . repNodes_eq sn no low high repa]" apply - apply (rule hd_filter_app [symmetric]) apply auto done have all_nodes_in_nl_Leafs: "\x \ set (prx@node#sfx). isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nodeslist: " x \ set (prx@node#sfx)" from isLeaf_no isLeaf_var_no have "var no \ 1" by simp with all_nodes_same_var [rule_format, OF x_in_nodeslist no_in_nl] have "var x \ 1" by simp with nodes_balanced_ordered [rule_format, OF x_in_nodeslist] show "isLeaf_pt x low high" by (auto simp add: isLeaf_pt_def) qed from no_in_take_Sucn have filter_Sucn_no_notempty: "[sn\(prx@[node]). repNodes_eq sn no low high repb] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have hd_term_in_take_Sucn: "hd [sn\(prx@[node]) . repNodes_eq sn no low high repb] \ set (prx@[node])" by (rule hd_filter_in_list) then have hd_term_in_nl: "hd [sn\(prx@[node]) . repNodes_eq sn no low high repb] \ set (prx@node#sfx)" by auto with all_nodes_in_nl_Leafs have hd_term_Leaf: "isLeaf_pt (hd [sn\ (prx@[node]). repNodes_eq sn no low high repb]) low high " by auto from while_low_Null have "repa (repa no) = repa no" by auto with no_notin_nl repa_repb_nc have repa_repb_no_repb: "repa (repb no) = repb no" by auto have repb_repb_no: "repb (repb no) = repb no" proof (cases "repb no = node") case False with repa_repb_nc repa_repb_no_repb show ?thesis by auto next assume repb_no_nln: " repb no = node" with hd_term_Leaf isLeaf_no all_nodes_in_nl_Leafs have nested_hd_repa_repb: "hd [sn\(prx@node#sfx). repNodes_eq sn (hd [sn\(prx@[node]) . repNodes_eq sn no low high repb]) low high repa] = hd [sn\(prx@node#sfx). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb]" by (simp add: isLeaf_pt_def repNodes_eq_def null_comp_def) from hd_term_in_take_Sucn have "[sn\(prx@[node]). repNodes_eq sn (hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have "hd [sn\(prx@[node]). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb] = hd [sn\(prx@node#sfx). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb]" apply - apply (rule hd_filter_app [symmetric]) apply auto done then have hd_term_nodeslist_Sucn: "hd [sn\(prx@node#sfx). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb] = hd [sn\(prx@[node]). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb]" by simp from no_in_take_Sucn filter_Sucn_no_notempty have filter_filter: "hd [sn\(prx@[node]). repNodes_eq sn (hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb] = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" apply - apply (rule filter_hd_P_rep_indep) apply (auto simp add: repNodes_eq_def) done from repb_no_def repb_no_nln repb_node have "repb (repb no) = hd [sn\(prx@node#sfx). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repa]" by simp with nested_hd_repa_repb have "repb (repb no) = hd [sn\(prx@node#sfx). repNodes_eq sn (hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb]" by simp with hd_term_nodeslist_Sucn have "repb (repb no) = hd [sn\(prx@[node]). repNodes_eq sn ( hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) low high repb]" by simp with filter_filter have "repb (repb no) = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" by simp with repb_no_def show ?thesis by simp qed have two_nodes_repb: "(\no1\set (prx@[node]). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1))" proof (intro ballI) fix no1 assume no1_in_take_Sucn: " no1 \ set (prx@[node])" then have "no1 \ set (prx@node#sfx)" by auto with all_nodes_in_nl_Leafs have isLeaf_no1: "isLeaf_pt no1 low high" by auto with isLeaf_no have repbchildren_eq_no_no1: "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" by (simp add: null_comp_def isLeaf_pt_def) from isLeaf_no1 isLeaf_no have repachildren_eq_no_no1: "(repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no" by (simp add: null_comp_def isLeaf_pt_def) from while_low_Null have while_low_same_rep: "(\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1))" by auto show "((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1)" proof (cases "no1 = node") case False with no1_in_take_Sucn have "no1 \ set prx" by auto with while_low_same_rep repachildren_eq_no_no1 have "repa no = repa no1" by auto with repa_repb_nc no_notin_nl False repbchildren_eq_no_no1 show ?thesis by auto next assume no1_nln: "no1 = node" hence no1_in_take_Sucn: "no1 \ set (prx@[node])" by auto hence no1_in_nl: "no1 \ set (prx@node#sfx)" by auto from nodes_balanced_ordered [rule_format, OF this] have balanced_no1: "(low no1 = Null) = (high no1 = Null)" by auto with no1_in_take_Sucn repb_no_share_def isLeaf_no1 have repb_no1: "repb no1 = hd [sn\(prx@[node]). repNodes_eq sn no1 low high repb]" by (auto simp add: isLeaf_pt_def) from balanced_no1 isLeaf_no1 isLeaf_no balanced_no have repbchildren_eq_no1_no: "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" by (simp add: null_comp_def isLeaf_pt_def) have "\ x \ set (prx@[node]). repNodes_eq x no low high repb = repNodes_eq x no1 low high repb" proof (intro ballI) fix x assume x_in_take_Sucn: " x \ set (prx@[node])" with repbchildren_eq_no1_no show "repNodes_eq x no low high repb = repNodes_eq x no1 low high repb" by (simp add: repNodes_eq_def) qed then have " [sn\(prx@[node]). repNodes_eq sn no low high repb] = [sn\(prx@[node]). repNodes_eq sn no1 low high repb]" by (rule P_eq_list_filter) with repb_no_def repb_no1 have repb_no_no1: "repb no = repb no1" by simp with repbchildren_eq_no1_no show ?thesis by simp qed qed with repb_repb_no repb_no_share_def no_in_take_Sucn share_case_repb show ?thesis using [[simp_depth_limit=4]] by auto next assume lno_nNull: "low no \ Null" with share_case_repb have repbchildren_neq_no: "(repb \ low) no \ (repb \ high) no" by auto from balanced_no lno_nNull have hno_nNull: "high no \ Null" by simp with repbchildren_neq_no lno_nNull repa_repb_nc lno_notin_nl hno_notin_nl nodes_notin_nl_neq_nln have repachildren_neq_no: "(repa \ low) no \ (repa \ high) no" using [[simp_depth_limit=2]] by (auto simp add: null_comp_def) with while_share_red_exp have repa_while_inv: "repa (repa no) = repa no \ (\no1\set prx. ((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1))" by auto from lno_nNull hno_nNull have no_nLeaf: "\ isLeaf_pt no low high" by (simp add: isLeaf_pt_def) have all_nodes_in_nl_nLeafs: "\x \ set (prx@node#sfx). \ isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nodeslist: " x \ set (prx@node#sfx)" from no_nLeaf isLeaf_var_no have "1 < var no " by simp with all_nodes_same_var [rule_format, OF x_in_nodeslist no_in_nl] have "1 < var x" by simp with nodes_balanced_ordered [rule_format, OF x_in_nodeslist] show " \ isLeaf_pt x low high" using [[simp_depth_limit = 2]] by (auto simp add: isLeaf_pt_def) qed have repb_repb_no: "repb (repb no) = repb no" proof - from repa_while_inv no_notin_nl repa_repb_nc have "repa (repb no) = repb no" by simp from hd_filter_Sucn_in_Sucn repb_no_def have repb_no_in_take_Sucn: "repb no \ set (prx@[node])" by simp hence repb_no_in_nl: "repb no \ set (prx@node#sfx)" by auto from all_nodes_in_nl_nLeafs repb_no_in_nl have repb_no_nLeaf: "\ isLeaf_pt (repb no) low high" by auto from nodes_balanced_ordered [rule_format, OF repb_no_in_nl] have "(low (repb no) = Null) = (high (repb no) = Null) \ low (repb no) \ set (prx@node#sfx) \ high (repb no) \ set (prx@node#sfx)" by auto from filter_take_Sucn_not_empty have " repNodes_eq (hd [sn\(prx@[node]). repNodes_eq sn no low high repb]) no low high repb" by (rule hd_filter_prop) with repb_no_def have "repNodes_eq (repb no) no low high repb" by simp then have "(repb \ low) (repb no) = (repb \ low) no \ (repb \ high) (repb no) = (repb \ high) no" by (simp add: repNodes_eq_def) with repbchildren_neq_no have "(repb \ low) (repb no) \ (repb \ high) (repb no)" by simp with repb_no_in_take_Sucn repb_no_share_def have repb_repb_no_double_hd: "repb (repb no) = hd [sn\(prx@[node]). repNodes_eq sn (repb no) low high repb]" by auto from filter_take_Sucn_not_empty have " hd [sn\(prx@[node]). repNodes_eq sn (repb no) low high repb] = repb no" apply (simp only: repb_no_def ) apply (rule filter_hd_P_rep_indep) apply (auto simp add: repNodes_eq_def) done with repb_repb_no_double_hd show ?thesis by simp qed have "(\no1\set (prx@[node]). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1))" proof (intro ballI) fix no1 assume no1_in_take_Sucn: "no1 \ set (prx@[node])" hence no1_in_nl: "no1 \ set (prx@node#sfx)" by auto from all_nodes_in_nl_nLeafs no1_in_nl have no1_nLeaf: "\ isLeaf_pt no1 low high" by auto from nodes_balanced_ordered [rule_format, OF no1_in_nl] have no1_props: "(low no1 = Null) = (high no1 = Null) \ low no1 \ set (prx@node#sfx) \ high no1 \ set (prx@node#sfx)" by auto show "((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1)" proof (cases "no1 = node") case False note no1_neq_nln=this with no1_in_take_Sucn have no1_in_take_n: "no1 \ set prx" by auto with repa_while_inv have "((repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no) = (repa no = repa no1)" by fastforce with no1_props no1_nLeaf no_nLeaf balanced_no lno_notin_nl hno_notin_nl nodes_notin_nl_neq_nln no_notin_nl no1_neq_nln repa_repb_nc show ?thesis using [[simp_depth_limit=1]] by (auto simp add: null_comp_def isLeaf_pt_def) next assume no1_nln: " no1 = node" show ?thesis proof assume repbchildren_eq_no1_no: "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" with repbchildren_neq_no have "(repb \ high) no1 \ (repb \ low) no1" by auto with repb_no_share_def no1_in_take_Sucn have repb_no1_def: " repb no1 = hd [sn\(prx@[node]). repNodes_eq sn no1 low high repb]" by auto have filter_no1_eq_filter_no: "[sn\(prx@[node]). repNodes_eq sn no1 low high repb] = [sn\(prx@[node]). repNodes_eq sn no low high repb]" proof - have "\x \ set (prx@[node]). repNodes_eq x no1 low high repb = repNodes_eq x no low high repb" proof (intro ballI) fix x assume x_in_take_Sucn: "x \ set (prx@[node])" with repbchildren_eq_no1_no show "repNodes_eq x no1 low high repb = repNodes_eq x no low high repb" by (simp add: repNodes_eq_def) qed then show ?thesis by (rule P_eq_list_filter) qed with repb_no1_def repb_no_def show " repb no = repb no1" by simp next assume repb_no_no1_eq: "repb no = repb no1" from no1_nln repb_node repb_no_def have repb_no1_def: "repb no1 = hd [sn\(prx@node#sfx). repNodes_eq sn node low high repa]" by auto with no1_nln repb_no_def repb_no_no1_eq have repb_Sucn_repa_nl_hd: " hd [sn\(prx@[node]). repNodes_eq sn no low high repb] = hd [sn\(prx@node#sfx). repNodes_eq sn no1 low high repa]" by simp from filter_take_Sucn_not_empty have " hd [sn\(prx@[node]). repNodes_eq sn no low high repb] = hd [sn\(prx@node#sfx) . repNodes_eq sn no low high repb]" apply - apply (rule hd_filter_app [symmetric]) apply auto done then have hd_Sucn_hd_whole_list: "hd [sn\(prx@[node]) . repNodes_eq sn no low high repb] = hd [sn\ (prx@node#sfx). repNodes_eq sn no low high repb]" by simp have hd_nl_repb_repa: "[sn\ (prx@node#sfx). repNodes_eq sn no low high repb] = [sn\(prx@node#sfx). repNodes_eq sn no low high repa]" proof - have "\x \ set (prx@node#sfx). repNodes_eq x no low high repb = repNodes_eq x no low high repa" proof (intro ballI) fix x assume x_in_nl: "x \ set (prx@node#sfx)" from all_nodes_in_nl_nLeafs x_in_nl have x_nLeaf: "\ isLeaf_pt x low high" by auto from nodes_balanced_ordered [rule_format, OF x_in_nl] have x_props: "(low x = Null) = (high x = Null) \ low x \ set (prx@node#sfx) \ high x \ set (prx@node#sfx)" by auto with x_nLeaf lno_nNull hno_nNull lno_notin_nl hno_notin_nl nodes_notin_nl_neq_nln repa_repb_nc show "repNodes_eq x no low high repb = repNodes_eq x no low high repa" using [[simp_depth_limit=1]] by (simp add: repNodes_eq_def isLeaf_pt_def null_comp_def) qed then show ?thesis by (rule P_eq_list_filter) qed with repb_Sucn_repa_nl_hd hd_Sucn_hd_whole_list have filter_nl_no_no1: "hd [sn\(prx@node#sfx). repNodes_eq sn no low high repa] = hd [sn\(prx@node#sfx). repNodes_eq sn no1 low high repa]" by simp from no_in_nl have filter_no_not_empty: "[sn\(prx@node#sfx). repNodes_eq sn no low high repa] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done from no1_in_nl have filter_no1_not_empty: "[sn\(prx@node#sfx). repNodes_eq sn no1 low high repa] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done from repb_no_def hd_Sucn_hd_whole_list hd_nl_repb_repa have "repb no = hd [sn\(prx@node#sfx). repNodes_eq sn no low high repa]" by simp with hd_filter_prop [OF filter_no_not_empty ] have repNodes_no_repa: "repNodes_eq (repb no) no low high repa" by auto from repb_no1_def no1_nln have "repb no1 = hd [sn\(prx@node#sfx). repNodes_eq sn no1 low high repa]" by simp with hd_filter_prop [OF filter_no1_not_empty ] have "repNodes_eq (repb no1) no1 low high repa" by auto with filter_nl_no_no1 repNodes_no_repa repb_no_no1_eq have "(repa \ high) no1 = (repa \ high) no \ (repa \ low) no1 = (repa \ low) no" by (simp add: repNodes_eq_def) with hno_nNull no1_props no1_nLeaf lno_nNull lno_notin_nl hno_notin_nl nodes_notin_nl_neq_nln repa_repb_nc show "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" using [[simp_depth_limit=1]] by (auto simp add: isLeaf_pt_def null_comp_def) qed qed qed with repb_repb_no repb_no_share_def share_case_repb no_in_take_Sucn show ?thesis using [[simp_depth_limit=1]] by auto qed qed with repb_no_nNull show ?thesis by simp next assume no_nln: "no = node" with repb_node have repb_no_def: "repb no = hd [sn\(prx@node#sfx). repNodes_eq sn no low high repa]" by simp from no_nln have "no \ set (prx@node#sfx)" by auto then have filter_nl_repa_not_empty: "[sn\(prx@node#sfx). repNodes_eq sn no low high repa] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have hd_filter_nl_in_nl: "hd [sn\(prx@node#sfx). repNodes_eq sn no low high repa] \ set (prx@node#sfx)" by (rule hd_filter_in_list) with repb_no_def have repb_no_in_nodeslist: "repb no \ set (prx@node#sfx)" by simp from nodes_balanced_ordered [rule_format,OF this] have repb_no_nNull: "repb no \ Null" by auto from share_cond no_nln have share_cond_or: "isLeaf_pt no low high \ repa (low no) \ repa (high no)" by auto have share_reduce_if: " (if (repb \ low) no = (repb \ high) no \ low no \ Null then repb no = (repb \ low) no else repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb] \ repb (repb no) = repb no \ (\no1\set (prx@[node]). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1)))" proof (cases "isLeaf_pt no low high") case True note isLeaf_no=this then have lno_Null: "low no = Null" by (simp add: isLeaf_pt_def) from isLeaf_no no_in_take_Sucn repb_no_share_def have repb_no_repb_def: "repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" by (auto simp add: isLeaf_pt_def) from isLeaf_no nodes_balanced_ordered [rule_format, OF no_in_nl] have var_no: "var no \ 1" by auto have all_nodes_nl_var_l_1: "\x \ set (prx@node#sfx). var x \ 1" proof (intro ballI) fix x assume x_in_nl: " x \ set (prx@node#sfx)" from all_nodes_same_var [rule_format, OF x_in_nl no_in_nl] var_no show " var x \ 1" by auto qed have all_nodes_nl_Leafs: "\x \ set (prx@node#sfx). isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nl: " x \ set (prx@node#sfx)" with all_nodes_nl_var_l_1 have "var x \ 1" by auto with nodes_balanced_ordered [rule_format, OF x_in_nl ] show "isLeaf_pt x low high" by auto qed have repb_repb_no: "repb (repb no) = repb no" proof - from repb_no_share_def no_in_take_Sucn lno_Null have repb_no_def: " repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" by auto with hd_filter_Sucn_in_Sucn have repb_no_in_take_Sucn: "repb no \ set (prx@[node])" by simp hence repb_no_in_nl: "repb no \ set (prx@[node])" by auto with all_nodes_nl_Leafs have repb_no_Leaf: "isLeaf_pt (repb no) low high" by auto with repb_no_in_take_Sucn repb_no_share_def have repb_repb_no_def: "repb (repb no) = hd [sn\(prx@[node]). repNodes_eq sn (repb no) low high repb] " by (auto simp add: isLeaf_pt_def) from filter_take_Sucn_not_empty show ?thesis apply (simp only: repb_repb_no_def ) apply (simp only: repb_no_def) apply (rule filter_hd_P_rep_indep) apply (auto simp add: repNodes_eq_def) done qed have two_nodes_repb: "(\no1\set (prx@[node]). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1))" proof (intro ballI) fix no1 assume no1_in_take_Sucn: "no1 \ set (prx@[node])" from no1_in_take_Sucn have "no1 \ set (prx@node#sfx)" by auto with all_nodes_nl_Leafs have isLeaf_no1: "isLeaf_pt no1 low high" by auto with repb_no_share_def no1_in_take_Sucn have repb_no1_def: "repb no1 = hd [sn\(prx@[node]). repNodes_eq sn no1 low high repb]" by (auto simp add: isLeaf_pt_def) show "((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1)" proof assume repbchildren_eq_no1_no: "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" have "[sn\(prx@[node]). repNodes_eq sn no1 low high repb] = [sn\(prx@[node]). repNodes_eq sn no low high repb]" proof - have "\x \ set (prx@[node]). repNodes_eq x no1 low high repb = repNodes_eq x no low high repb" proof (intro ballI) fix x assume x_in_take_Sucn: " x \ set (prx@[node])" with repbchildren_eq_no1_no show " repNodes_eq x no1 low high repb = repNodes_eq x no low high repb" by (simp add: repNodes_eq_def) qed then show ?thesis by (rule P_eq_list_filter) qed with repb_no1_def repb_no_repb_def show "repb no = repb no1" by simp next assume repb_no_no1: "repb no = repb no1" with isLeaf_no isLeaf_no1 show "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" by (simp add: null_comp_def isLeaf_pt_def) qed qed with repb_repb_no lno_Null no_in_take_Sucn repb_no_share_def show ?thesis by auto next assume no_nLeaf: "\ isLeaf_pt no low high" with balanced_no obtain lno_nNull: "low no \ Null" and hno_nNull: "high no \ Null" by (simp add: isLeaf_pt_def) from no_nLeaf nodes_balanced_ordered [rule_format, OF no_in_nl] have var_no: "1 < var no" by auto have all_nodes_nl_var_l_1: "\x \ set (prx@node#sfx). 1 < var x" proof (intro ballI) fix x assume x_in_nl: " x \ set (prx@node#sfx)" with all_nodes_same_var [rule_format, OF x_in_nl no_in_nl] var_no show "1 < var x" by simp qed have all_nodes_nl_nLeafs: "\ x \ set (prx@node#sfx). \ isLeaf_pt x low high" proof (intro ballI) fix x assume x_in_nl: " x \ set (prx@node#sfx)" with all_nodes_nl_var_l_1 have "1 < var x" by auto with nodes_balanced_ordered [rule_format, OF x_in_nl] show " \ isLeaf_pt x low high" by auto qed from no_nLeaf share_cond_or have repachildren_neq_no: "repa (low no) \ repa (high no)" by auto with lno_nNull hno_nNull have "(repa \ low) no \ (repa \ high) no" by (simp add: null_comp_def) with repa_repb_nc lno_notin_nl hno_notin_nl nodes_notin_nl_neq_nln lno_nNull hno_nNull have repbchildren_neq_no: "(repb \ low) no \ (repb \ high) no" using [[simp_depth_limit=1]] by (auto simp add: null_comp_def) have repb_repb_no: "repb (repb no) = repb no" proof - from repb_no_share_def no_in_take_Sucn repbchildren_neq_no have repb_no_def: "repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" by auto from filter_take_Sucn_not_empty have "repNodes_eq (repb no) no low high repb" apply (simp only: repb_no_def) apply (rule hd_filter_prop) apply simp done with repbchildren_neq_no have repbchildren_neq_repb_no: "(repb \ low) (repb no) \ (repb \ high) (repb no)" by (simp add: repNodes_eq_def) from filter_take_Sucn_not_empty have "repb no \ set (prx@[node])" apply (simp only: repb_no_def ) apply (rule hd_filter_in_list) apply simp done with repbchildren_neq_repb_no repb_no_share_def have repb_repb_no_def: " repb (repb no) = hd [sn\(prx@[node]) . repNodes_eq sn (repb no) low high repb] " by auto from filter_take_Sucn_not_empty show ?thesis apply (simp only: repb_repb_no_def ) apply (simp only: repb_no_def) apply (rule filter_hd_P_rep_indep) apply (auto simp add: repNodes_eq_def) done qed have two_nodes_repb: "(\no1\set (prx@[node]). ((repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no) = (repb no = repb no1))" (is "(\no1\set (prx@[node]). ?P no1)") proof (intro ballI) fix no1 assume no1_in_take_Sucn: " no1 \ set (prx@[node])" hence no1_in_nodeslist: "no1 \ set (prx@node#sfx)" by auto with all_nodes_nl_nLeafs have no1_nLeaf: "\ isLeaf_pt no1 low high" by auto show "?P no1" proof assume repbchildren_eq_no1_no: "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" with repbchildren_neq_no have "(repb \ high) no1 \ (repb \ low) no1" by auto with no1_in_take_Sucn repb_no_share_def have repb_no1_def: "repb no1 = hd [sn\(prx@[node]). repNodes_eq sn no1 low high repb]" by auto from repb_no_share_def no_in_take_Sucn repbchildren_neq_no have repb_no_def: "repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" by auto have "[sn\(prx@[node]). repNodes_eq sn no1 low high repb] = [sn\(prx@[node]). repNodes_eq sn no low high repb]" proof - have "\ x \ set (prx@[node]). repNodes_eq x no1 low high repb = repNodes_eq x no low high repb" proof (intro ballI) fix x assume x_in_take_Sucn: " x \ set (prx@[node])" with repbchildren_eq_no1_no show " repNodes_eq x no1 low high repb = repNodes_eq x no low high repb" by (simp add: repNodes_eq_def) qed then show ?thesis by (rule P_eq_list_filter) qed with repb_no_def repb_no1_def show " repb no = repb no1" by simp next assume repb_no_no1: "repb no = repb no1" from repb_no_share_def no_in_take_Sucn repbchildren_neq_no have repb_no_def: "repb no = hd [sn\(prx@[node]). repNodes_eq sn no low high repb]" by auto from filter_take_Sucn_not_empty have "repb no \ set (prx@[node])" apply (simp only: repb_no_def) apply (rule hd_filter_in_list) apply simp done then have repb_no_in_nl: "repb no \ set (prx@node#sfx)" by auto from filter_take_Sucn_not_empty have repNodes_repb_no: "repNodes_eq (repb no) no low high repb" apply (simp only: repb_no_def) apply (rule hd_filter_prop) apply simp done show "(repb \ high) no1 = (repb \ high) no \ (repb \ low) no1 = (repb \ low) no" proof (cases "(repb \ low) no1 = (repb \ high) no1") case True note red_cond=this from no1_in_nodeslist all_nodes_nl_nLeafs have no1_nLeaf: "\ isLeaf_pt no1 low high" by auto from nodes_balanced_ordered [rule_format, OF no1_in_nodeslist] have no1_props: "(low no1 \ set (prx@node#sfx)) \ (high no1 \ set (prx@node#sfx)) \(low no1 = Null) = (high no1 = Null) \ ((rep \ low) no1 \ set (prx@node#sfx))" by auto with red_cond no1_nLeaf no1_in_take_Sucn repb_no_red_def have repb_no1_def: "repb no1 = (repb \ low) no1" by (auto simp add: isLeaf_pt_def) with no1_nLeaf no1_props have "repb no1 = repb (low no1)" by (simp add: null_comp_def isLeaf_pt_def) from no1_props no1_nLeaf have "rep (low no1) \ set (prx@node#sfx)" by (auto simp add: isLeaf_pt_def null_comp_def) with rep_repb_nc no1_props have "repb (low no1) \ set (prx@node#sfx)" by auto with repb_no1_def repb_no_no1 no1_props no1_nLeaf have "repb no \ set (prx@node#sfx)" by (simp add: isLeaf_pt_def null_comp_def) with repb_no_in_nl show ?thesis by simp next assume "(repb \ low) no1 \ (repb \ high) no1" with repb_no_share_def no1_in_take_Sucn have repb_no1_def: " repb no1 = hd [sn\(prx@[node]). repNodes_eq sn no1 low high repb]" by auto from no1_in_take_Sucn have "[sn\(prx@[node]). repNodes_eq sn no1 low high repb] \ []" apply - apply (rule filter_not_empty) apply (auto simp add: repNodes_eq_def) done then have repNodes_repb_no1: "repNodes_eq (repb no1) no1 low high repb" apply (simp only: repb_no1_def ) apply (rule hd_filter_prop) apply simp done with repNodes_repb_no repb_no_no1 have "repNodes_eq no1 no low high repb" by (simp add: repNodes_eq_def) then show ?thesis by (simp add: repNodes_eq_def) qed qed qed with repb_repb_no repb_no_share_def no_in_take_Sucn repbchildren_neq_no show ?thesis using [[simp_depth_limit=2]] by fastforce qed with repb_no_nNull show ?thesis by simp qed qed with rep_repb_nc show ?thesis by (intro conjI) qed qed end