theory BTree imports Main "HOL-Data_Structures.Sorted_Less" "HOL-Data_Structures.Cmp" begin (* some setup to cover up the redefinition of sorted in Sorted_Less but keep the lemmas *) hide_const (open) Sorted_Less.sorted abbreviation "sorted_less \ Sorted_Less.sorted" section "Definition of the B-Tree" subsection "Datatype definition" text "B-trees can be considered to have all data stored interleaved as child nodes and separating elements (also keys or indices). We define them to either be a Node that holds a list of pairs of children and indices or be a completely empty Leaf." datatype 'a btree = Leaf | Node "('a btree * 'a) list" "'a btree" type_synonym 'a btree_list = "('a btree * 'a) list" type_synonym 'a btree_pair = "('a btree * 'a)" abbreviation subtrees where "subtrees xs \ (map fst xs)" abbreviation separators where "separators xs \ (map snd xs)" subsection "Inorder and Set" text "The set of B-tree elements is defined automatically." thm btree.set value "set_btree (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf, 30), (Leaf, 100)] Leaf)" text "The inorder view is defined with the help of the concat function." fun inorder :: "'a btree \ 'a list" where "inorder Leaf = []" | "inorder (Node ts t) = concat (map (\ (sub, sep). inorder sub @ [sep]) ts) @ inorder t" abbreviation "inorder_pair \ \(sub,sep). inorder sub @ [sep]" abbreviation "inorder_list ts \ concat (map inorder_pair ts)" (* this abbreviation makes handling the list much nicer *) thm inorder.simps value "inorder (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf, 30), (Leaf, 100)] Leaf)" subsection "Height and Balancedness" class height = fixes height :: "'a \ nat" instantiation btree :: (type) height begin fun height_btree :: "'a btree \ nat" where "height Leaf = 0" | "height (Node ts t) = Suc (Max (height ` (set (subtrees ts@[t]))))" instance .. end text "Balancedness is defined is close accordance to the definition by Ernst" fun bal:: "'a btree \ bool" where "bal Leaf = True" | "bal (Node ts t) = ( (\sub \ set (subtrees ts). height sub = height t) \ (\sub \ set (subtrees ts). bal sub) \ bal t )" value "height (Node [(Leaf, (0::nat)), (Node [(Leaf, 1), (Leaf, 10)] Leaf, 12), (Leaf, 30), (Leaf, 100)] Leaf)" subsection "Order" text "The order of a B-tree is defined just as in the original paper by Bayer." (* alt1: following knuths definition to allow for any natural number as order and resolve ambiguity *) (* alt2: use range [k,2*k] allowing for valid btrees from k=1 onwards NOTE this is what I ended up implementing *) fun order:: "nat \ 'a btree \ bool" where "order k Leaf = True" | "order k (Node ts t) = ( (length ts \ k) \ (length ts \ 2*k) \ (\sub \ set (subtrees ts). order k sub) \ order k t )" text \The special condition for the root is called \textit{root\_order}\ (* the invariant for the root of the btree *) fun root_order:: "nat \ 'a btree \ bool" where "root_order k Leaf = True" | "root_order k (Node ts t) = ( (length ts > 0) \ (length ts \ 2*k) \ (\s \ set (subtrees ts). order k s) \ order k t )" subsection "Auxiliary Lemmas" (* auxiliary lemmas when handling sets *) lemma separators_split: "set (separators (l@(a,b)#r)) = set (separators l) \ set (separators r) \ {b}" by simp lemma subtrees_split: "set (subtrees (l@(a,b)#r)) = set (subtrees l) \ set (subtrees r) \ {a}" by simp (* height and set lemmas *) lemma finite_set_ins_swap: assumes "finite A" shows "max a (Max (Set.insert b A)) = max b (Max (Set.insert a A))" using Max_insert assms max.commute max.left_commute by fastforce lemma finite_set_in_idem: assumes "finite A" shows "max a (Max (Set.insert a A)) = Max (Set.insert a A)" using Max_insert assms max.commute max.left_commute by fastforce lemma height_Leaf: "height t = 0 \ t = Leaf" by (induction t) (auto) lemma height_btree_order: "height (Node (ls@[a]) t) = height (Node (a#ls) t)" by simp lemma height_btree_sub: "height (Node ((sub,x)#ls) t) = max (height (Node ls t)) (Suc (height sub))" by simp lemma height_btree_last: "height (Node ((sub,x)#ts) t) = max (height (Node ts sub)) (Suc (height t))" by (induction ts) auto lemma set_btree_inorder: "set (inorder t) = set_btree t" apply(induction t) apply(auto) done lemma child_subset: "p \ set t \ set_btree (fst p) \ set_btree (Node t n)" apply(induction p arbitrary: t n) apply(auto) done lemma some_child_sub: assumes "(sub,sep) \ set t" shows "sub \ set (subtrees t)" and "sep \ set (separators t)" using assms by force+ (* balancedness lemmas *) lemma bal_all_subtrees_equal: "bal (Node ts t) \ (\s1 \ set (subtrees ts). \s2 \ set (subtrees ts). height s1 = height s2)" by (metis BTree.bal.simps(2)) lemma fold_max_set: "\x \ set t. x = f \ fold max t f = f" apply(induction t) apply(auto simp add: max_def_raw) done lemma height_bal_tree: "bal (Node ts t) \ height (Node ts t) = Suc (height t)" by (induction ts) auto lemma bal_split_last: assumes "bal (Node (ls@(sub,sep)#rs) t)" shows "bal (Node (ls@rs) t)" and "height (Node (ls@(sub,sep)#rs) t) = height (Node (ls@rs) t)" using assms by auto lemma bal_split_right: assumes "bal (Node (ls@rs) t)" shows "bal (Node rs t)" and "height (Node rs t) = height (Node (ls@rs) t)" using assms by (auto simp add: image_constant_conv) lemma bal_split_left: assumes "bal (Node (ls@(a,b)#rs) t)" shows "bal (Node ls a)" and "height (Node ls a) = height (Node (ls@(a,b)#rs) t)" using assms by (auto simp add: image_constant_conv) lemma bal_substitute: "\bal (Node (ls@(a,b)#rs) t); height t = height c; bal c\ \ bal (Node (ls@(c,b)#rs) t)" unfolding bal.simps by auto lemma bal_substitute_subtree: "\bal (Node (ls@(a,b)#rs) t); height a = height c; bal c\ \ bal (Node (ls@(c,b)#rs) t)" using bal_substitute by auto lemma bal_substitute_separator: "bal (Node (ls@(a,b)#rs) t) \ bal (Node (ls@(a,c)#rs) t)" unfolding bal.simps by auto (* order lemmas *) lemma order_impl_root_order: "\k > 0; order k t\ \ root_order k t" apply(cases t) apply(auto) done (* sorted inorder implies that some sublists are sorted. This can be followed directly *) lemma sorted_inorder_list_separators: "sorted_less (inorder_list ts) \ sorted_less (separators ts)" apply(induction ts) apply (auto simp add: sorted_lems) done corollary sorted_inorder_separators: "sorted_less (inorder (Node ts t)) \ sorted_less (separators ts)" using sorted_inorder_list_separators sorted_wrt_append by auto lemma sorted_inorder_list_subtrees: "sorted_less (inorder_list ts) \ \ sub \ set (subtrees ts). sorted_less (inorder sub)" apply(induction ts) apply (auto simp add: sorted_lems)+ done corollary sorted_inorder_subtrees: "sorted_less (inorder (Node ts t)) \ \ sub \ set (subtrees ts). sorted_less (inorder sub)" using sorted_inorder_list_subtrees sorted_wrt_append by auto lemma sorted_inorder_list_induct_subtree: "sorted_less (inorder_list (ls@(sub,sep)#rs)) \ sorted_less (inorder sub)" by (simp add: sorted_wrt_append) corollary sorted_inorder_induct_subtree: "sorted_less (inorder (Node (ls@(sub,sep)#rs) t)) \ sorted_less (inorder sub)" by (simp add: sorted_wrt_append) lemma sorted_inorder_induct_last: "sorted_less (inorder (Node ts t)) \ sorted_less (inorder t)" by (simp add: sorted_wrt_append) end