(* Authors: Jose Divasón Sebastiaan Joosten René Thiemann Akihisa Yamada *) section \The Polynomial Factorization Algorithm\ subsection \Factoring Square-Free Integer Polynomials\ text \We combine all previous results, i.e., Berlekamp's algorithm, Hensel-lifting, the reconstruction of Zassenhaus, Mignotte-bounds, etc., to eventually assemble the factorization algorithm for integer polynomials.\ theory Berlekamp_Zassenhaus imports Berlekamp_Hensel Polynomial_Factorization.Gauss_Lemma Polynomial_Factorization.Dvd_Int_Poly Reconstruction Suitable_Prime Degree_Bound Code_Abort_Gcd begin context begin private partial_function (tailrec) find_exponent_main :: "int \ int \ nat \ int \ nat" where [code]: "find_exponent_main p pm m bnd = (if pm > bnd then m else find_exponent_main p (pm * p) (Suc m) bnd)" definition find_exponent :: "int \ int \ nat" where "find_exponent p bnd = find_exponent_main p p 1 bnd" lemma find_exponent: assumes p: "p > 1" shows "p ^ find_exponent p bnd > bnd" "find_exponent p bnd \ 0" proof - { fix m and n assume "n = nat (1 + bnd - p^m)" and "m \ 1" hence "bnd < p ^ find_exponent_main p (p^m) m bnd \ find_exponent_main p (p^m) m bnd \ 1" proof (induct n arbitrary: m rule: less_induct) case (less n m) note simp = find_exponent_main.simps[of p "p^m"] show ?case proof (cases "bnd < p ^ m") case True thus ?thesis using less unfolding simp by simp next case False hence id: "find_exponent_main p (p ^ m) m bnd = find_exponent_main p (p ^ Suc m) (Suc m) bnd" unfolding simp by (simp add: ac_simps) show ?thesis unfolding id by (rule less(1)[OF _ refl], unfold less(2), insert False p, auto) qed qed } from this[OF refl, of 1] show "p ^ find_exponent p bnd > bnd" "find_exponent p bnd \ 0" unfolding find_exponent_def by auto qed end definition berlekamp_zassenhaus_factorization :: "int poly \ int poly list" where "berlekamp_zassenhaus_factorization f = (let \ \find suitable prime\ p = suitable_prime_bz f; \ \compute finite field factorization\ (_, fs) = finite_field_factorization_int p f; \ \determine maximal degree that we can build by multiplying at most half of the factors\ max_deg = degree_bound fs; \ \determine a number large enough to represent all coefficients of every\ \ \factor of \lc * f\ that has at most degree most \max_deg\\ bnd = 2 * \lead_coeff f\ * factor_bound f max_deg; \ \determine \k\ such that \p^k > bnd\\ k = find_exponent p bnd; \ \perform hensel lifting to lift factorization to mod \p^k\\ vs = hensel_lifting p k f fs \ \reconstruct integer factors\ in zassenhaus_reconstruction vs p k f)" theorem berlekamp_zassenhaus_factorization_irreducible\<^sub>d: assumes res: "berlekamp_zassenhaus_factorization f = fs" and sf: "square_free f" and deg: "degree f > 0" shows "f = prod_list fs \ (\ fi \ set fs. irreducible\<^sub>d fi)" proof - let ?lc = "lead_coeff f" define p where "p \ suitable_prime_bz f" obtain c gs where berl: "finite_field_factorization_int p f = (c,gs)" by force let ?degs = "map degree gs" note res = res[unfolded berlekamp_zassenhaus_factorization_def Let_def, folded p_def, unfolded berl split, folded] from suitable_prime_bz[OF sf refl] have prime: "prime p" and cop: "coprime ?lc p" and sf: "poly_mod.square_free_m p f" unfolding p_def by auto from prime interpret poly_mod_prime p by unfold_locales define n where "n = find_exponent p (2 * abs ?lc * factor_bound f (degree_bound gs))" note n = find_exponent[OF m1, of "2 * abs ?lc * factor_bound f (degree_bound gs)", folded n_def] note bh = berlekamp_and_hensel_separated[OF cop sf refl berl n(2)] have db: "degree_bound (berlekamp_hensel p n f) = degree_bound gs" unfolding bh degree_bound_def max_factor_degree_def by simp note res = res[folded n_def bh(1)] show ?thesis by (rule zassenhaus_reconstruction_irreducible\<^sub>d[OF prime cop sf deg refl _ res], insert n db, auto) qed corollary berlekamp_zassenhaus_factorization_irreducible: assumes res: "berlekamp_zassenhaus_factorization f = fs" and sf: "square_free f" and pr: "primitive f" and deg: "degree f > 0" shows "f = prod_list fs \ (\ fi \ set fs. irreducible fi)" using pr irreducible_primitive_connect[OF primitive_prod_list] berlekamp_zassenhaus_factorization_irreducible\<^sub>d[OF res sf deg] by auto end