(* ========================================================================= *) (* Projective coordinates, (x,y,z) |-> (x/z,y/z) and (0,1,0) |-> infinity *) (* ========================================================================= *) needs "EC/weierstrass.ml";; let projective_point = define `projective_point f (x,y,z) <=> x IN ring_carrier f /\ y IN ring_carrier f /\ z IN ring_carrier f`;; let projective_curve = define `projective_curve (f,a:A,b) (x,y,z) <=> x IN ring_carrier f /\ y IN ring_carrier f /\ z IN ring_carrier f /\ ring_mul f (ring_pow f y 2) z = ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a (ring_mul f x (ring_pow f z 2))) (ring_mul f b (ring_pow f z 3)))`;; let weierstrass_of_projective = define `weierstrass_of_projective (f:A ring) (x,y,z) = if z = ring_0 f then NONE else SOME(ring_div f x z,ring_div f y z)`;; let projective_of_weierstrass = define `projective_of_weierstrass (f:A ring) NONE = (ring_0 f,ring_1 f,ring_0 f) /\ projective_of_weierstrass f (SOME(x,y)) = (x,y,ring_1 f)`;; let projective_eq = define `projective_eq (f:A ring) (x,y,z) (x',y',z') <=> (z = ring_0 f <=> z' = ring_0 f) /\ ring_mul f x z' = ring_mul f x' z /\ ring_mul f y z' = ring_mul f y' z`;; let projective_0 = new_definition `projective_0 (f:A ring,a:A,b:A) = (ring_0 f,ring_1 f,ring_0 f)`;; let projective_neg = new_definition `projective_neg (f,a:A,b:A) (x,y,z) = (x:A,ring_neg f y:A,z:A)`;; let projective_add = new_definition `projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2) = if z1 = ring_0 f then (x2,y2,z2) else if z2 = ring_0 f then (x1,y1,z1) else if projective_eq f (x1,y1,z1) (x2,y2,z2) then let t = ring_add f (ring_mul f a (ring_pow f z1 2)) (ring_mul f (ring_of_num f 3) (ring_pow f x1 2)) and u = ring_mul f y1 z1 in let v = ring_mul f u (ring_mul f x1 y1) in let w = ring_sub f (ring_pow f t 2) (ring_mul f (ring_of_num f 8) v) in (ring_mul f (ring_of_num f 2) (ring_mul f u w), ring_sub f (ring_mul f t (ring_sub f (ring_mul f (ring_of_num f 4) v) w)) (ring_mul f (ring_of_num f 8) (ring_mul f (ring_pow f y1 2) (ring_pow f u 2))), ring_mul f (ring_of_num f 8) (ring_pow f u 3)) else if projective_eq f (projective_neg (f,a,b) (x1,y1,z1)) (x2,y2,z2) then projective_0 (f,a,b) else let u = ring_sub f (ring_mul f y2 z1) (ring_mul f y1 z2) and v = ring_sub f (ring_mul f x2 z1) (ring_mul f x1 z2) in let w = ring_sub f (ring_sub f (ring_mul f (ring_pow f u 2) (ring_mul f z1 z2)) (ring_pow f v 3)) (ring_mul f (ring_of_num f 2) (ring_mul f (ring_pow f v 2) (ring_mul f x1 z2))) in (ring_mul f v w, ring_sub f (ring_mul f u (ring_sub f (ring_mul f (ring_pow f v 2) (ring_mul f x1 z2)) w)) (ring_mul f (ring_pow f v 3) (ring_mul f y1 z2)), ring_mul f (ring_pow f v 3) (ring_mul f z1 z2))`;; let PROJECTIVE_CURVE_IMP_POINT = prove (`!f a b p. projective_curve(f,a,b) p ==> projective_point f p`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[projective_curve; projective_point]);; let PROJECTIVE_OF_WEIERSTRASS_POINT_EQ = prove (`!(f:A ring) p. projective_point f (projective_of_weierstrass f p) <=> weierstrass_point f p`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[weierstrass_point; projective_of_weierstrass] THEN SIMP_TAC[projective_point; RING_0; RING_1]);; let PROJECTIVE_OF_WEIERSTRASS_POINT = prove (`!(f:A ring) p. weierstrass_point f p ==> projective_point f (projective_of_weierstrass f p)`, REWRITE_TAC[PROJECTIVE_OF_WEIERSTRASS_POINT_EQ]);; let WEIERSTRASS_OF_PROJECTIVE_POINT = prove (`!(f:A ring) p. projective_point f p ==> weierstrass_point f (weierstrass_of_projective f p)`, SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_projective; projective_point] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[weierstrass_point; RING_DIV]);; let PROJECTIVE_OF_WEIERSTRASS_EQ = prove (`!(f:A ring) p q. field f ==> (projective_of_weierstrass f p = projective_of_weierstrass f q <=> p = q)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN REWRITE_TAC[projective_of_weierstrass; option_DISTINCT; option_INJ] THEN SIMP_TAC[PAIR_EQ]);; let WEIERSTRASS_OF_PROJECTIVE_EQ = prove (`!(f:A ring) p q. field f /\ projective_point f p /\ projective_point f q ==> (weierstrass_of_projective f p = weierstrass_of_projective f q <=> projective_eq f p q)`, REWRITE_TAC[FORALL_PAIR_THM; projective_point] THEN REWRITE_TAC[weierstrass_of_projective; projective_eq] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[option_INJ; option_DISTINCT]) THEN ASM_SIMP_TAC[RING_MUL_RZERO; PAIR_EQ] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] FIELD_MUL_LINV)))) THEN ASM_REWRITE_TAC[ring_div] THEN W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN ASM_SIMP_TAC[RING_INV; FIELD_IMP_INTEGRAL_DOMAIN]);; let WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS = prove (`!(f:A ring) p. field f /\ weierstrass_point f p ==> weierstrass_of_projective f (projective_of_weierstrass f p) = p`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN SIMP_TAC[weierstrass_of_projective; projective_of_weierstrass; weierstrass_point; RING_DIV_1]);; let PROJECTIVE_OF_WEIERSTRASS_OF_PROJECTIVE = prove (`!(f:A ring) p. field f /\ projective_point f p ==> projective_eq f (projective_of_weierstrass f (weierstrass_of_projective f p)) p`, SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS; PROJECTIVE_OF_WEIERSTRASS_POINT_EQ; WEIERSTRASS_OF_PROJECTIVE_POINT]);; let PROJECTIVE_OF_WEIERSTRASS_CURVE_EQ = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_point f p ==> (projective_curve (f,a,b) (projective_of_weierstrass f p) <=> weierstrass_curve (f,a,b) p)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; weierstrass_point] THEN REWRITE_TAC[weierstrass_curve; projective_of_weierstrass] THEN SIMP_TAC[projective_curve; RING_0; RING_1] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let PROJECTIVE_OF_WEIERSTRASS_CURVE = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve (f,a,b) p ==> projective_curve (f,a,b) (projective_of_weierstrass f p)`, MESON_TAC[PROJECTIVE_OF_WEIERSTRASS_CURVE_EQ; WEIERSTRASS_CURVE_IMP_POINT]);; let WEIERSTRASS_OF_PROJECTIVE_CURVE = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_curve (f,a,b) p ==> weierstrass_curve (f,a,b) (weierstrass_of_projective f p)`, SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_projective; projective_curve] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[weierstrass_curve; RING_DIV] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] FIELD_MUL_LINV)))) THEN ASM_REWRITE_TAC[ring_div] THEN W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN ASM_SIMP_TAC[RING_INV; FIELD_IMP_INTEGRAL_DOMAIN]);; let PROJECTIVE_POINT_NEG = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f p ==> projective_point f (projective_neg (f,a,b) p)`, REWRITE_TAC[FORALL_PAIR_THM; projective_neg; projective_point] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let PROJECTIVE_CURVE_NEG = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_curve (f,a,b) p ==> projective_curve (f,a,b) (projective_neg (f,a,b) p)`, REWRITE_TAC[FORALL_PAIR_THM; projective_neg; projective_curve] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let WEIERSTRASS_OF_PROJECTIVE_NEG = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f p ==> weierstrass_of_projective f (projective_neg (f,a,b) p) = weierstrass_neg (f,a,b) (weierstrass_of_projective f p)`, REWRITE_TAC[FORALL_PAIR_THM; projective_neg; weierstrass_of_projective; projective_point] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_neg; option_INJ; PAIR_EQ] THEN FIELD_TAC);; let PROJECTIVE_EQ_NEG = prove (`!(f:A ring) a b p p'. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f p /\ projective_point f p' /\ projective_eq f p p' ==> projective_eq f (projective_neg (f,a,b) p) (projective_neg (f,a,b) p')`, REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; PROJECTIVE_POINT_NEG] THEN ASM_SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_NEG]);; let WEIERSTRASS_OF_PROJECTIVE_NEG_OF_WEIERSTRASS = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_point f p ==> weierstrass_of_projective f (projective_neg (f,a,b) (projective_of_weierstrass f p)) = weierstrass_neg (f,a,b) p`, SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_NEG; PROJECTIVE_OF_WEIERSTRASS_POINT; WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);; let PROJECTIVE_OF_WEIERSTRASS_NEG = prove (`!(f:A ring) a b p. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_point f p ==> projective_eq f (projective_of_weierstrass f (weierstrass_neg (f,a,b) p)) (projective_neg (f,a,b) (projective_of_weierstrass f p))`, SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; PROJECTIVE_OF_WEIERSTRASS_POINT; PROJECTIVE_POINT_NEG; WEIERSTRASS_POINT_NEG; WEIERSTRASS_OF_PROJECTIVE_NEG; WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);; let PROJECTIVE_POINT_ADD = prove (`!(f:A ring) a b p q. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f p /\ projective_point f q ==> projective_point f (projective_add (f,a,b) p q)`, REWRITE_TAC[FORALL_PAIR_THM; projective_add; projective_point; projective_0; projective_eq; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[projective_add; projective_point; projective_eq; LET_DEF; LET_END_DEF]) THEN REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; let PROJECTIVE_CURVE_ADD = prove (`!(f:A ring) a b p q. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_curve (f,a,b) p /\ projective_curve (f,a,b) q ==> projective_curve (f,a,b) (projective_add (f,a,b) p q)`, REWRITE_TAC[FORALL_PAIR_THM; projective_add; projective_curve; projective_0; projective_eq; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[projective_add; projective_curve; projective_eq; LET_DEF; LET_END_DEF]) THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; let WEIERSTRASS_OF_PROJECTIVE_ADD = prove (`!(f:A ring) a b p q. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f p /\ projective_point f q ==> weierstrass_of_projective f (projective_add (f,a,b) p q) = weierstrass_add (f,a,b) (weierstrass_of_projective f p) (weierstrass_of_projective f q)`, REWRITE_TAC[FIELD_CHAR_NOT23; FORALL_PAIR_THM; projective_point] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `b:A`; `x1:A`; `y1:A`; `z1:A`; `x2:A`; `y2:A`; `z2:A`] THEN STRIP_TAC THEN REWRITE_TAC[weierstrass_of_projective; projective_add] THEN MAP_EVERY ASM_CASES_TAC [`z1:A = ring_0 f`; `z2:A = ring_0 f`] THEN ASM_REWRITE_TAC[weierstrass_of_projective; weierstrass_add] THEN ASM_REWRITE_TAC[projective_eq; projective_neg; projective_0] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_of_projective] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_TAC) ORELSE FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let PROJECTIVE_EQ_ADD = prove (`!(f:A ring) a b p p' q q'. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f p /\ projective_point f p' /\ projective_point f q /\ projective_point f q' /\ projective_eq f p p' /\ projective_eq f q q' ==> projective_eq f (projective_add (f,a,b) p q) (projective_add (f,a,b) p' q')`, REPEAT GEN_TAC THEN REPLICATE_TAC 9 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; PROJECTIVE_POINT_ADD] THEN ASM_SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_ADD]);; let WEIERSTRASS_OF_PROJECTIVE_ADD_OF_WEIERSTRASS = prove (`!(f:A ring) a b p q. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_point f p /\ weierstrass_point f q ==> weierstrass_of_projective f (projective_add (f,a,b) (projective_of_weierstrass f p) (projective_of_weierstrass f q)) = weierstrass_add (f,a,b) p q`, SIMP_TAC[WEIERSTRASS_OF_PROJECTIVE_ADD; PROJECTIVE_OF_WEIERSTRASS_POINT; WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);; let PROJECTIVE_OF_WEIERSTRASS_ADD = prove (`!(f:A ring) a b p q. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_point f p /\ weierstrass_point f q ==> projective_eq f (projective_of_weierstrass f (weierstrass_add (f,a,b) p q)) (projective_add (f,a,b) (projective_of_weierstrass f p) (projective_of_weierstrass f q))`, SIMP_TAC[GSYM WEIERSTRASS_OF_PROJECTIVE_EQ; PROJECTIVE_OF_WEIERSTRASS_POINT; PROJECTIVE_POINT_ADD; WEIERSTRASS_POINT_ADD; WEIERSTRASS_OF_PROJECTIVE_ADD; WEIERSTRASS_OF_PROJECTIVE_OF_WEIERSTRASS]);;