(* ========================================================================= *) (* Permuted lists and finite permutations. *) (* *) (* Author: Marco Maggesi *) (* University of Florence, Italy *) (* http://www.math.unifi.it/~maggesi/ *) (* *) (* (c) Copyright, Marco Maggesi, 2005-2007 *) (* ========================================================================= *) needs "Permutation/permuted.ml";; (* ------------------------------------------------------------------------- *) (* Permutation that reverse a list. *) (* ------------------------------------------------------------------------- *) let REVPERM = define `REVPERM 0 = [] /\ REVPERM (SUC n) = n :: REVPERM n`;; let MEM_REVPERM = prove (`!n m. MEM m (REVPERM n) <=> m < n`, INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; MEM; LT]);; let LIST_UNIQ_REVPERM = prove (`!n. LIST_UNIQ (REVPERM n)`, INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; LIST_UNIQ; MEM_REVPERM] THEN ARITH_TAC);; let DELETE1_REVPERM = prove (`!n. DELETE1 n (REVPERM (SUC n)) = REVPERM n`, INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; DELETE1; MEM]);; let COUNT_REVPERM = prove (`!n i. COUNT i (REVPERM n) = if i < n then 1 else 0`, INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; COUNT] THEN ARITH_TAC);; let SET_OF_LIST_REVPERM = prove (`!n. set_of_list (REVPERM n) = {m | m < n}`, INDUCT_TAC THEN ASM_REWRITE_TAC [REVPERM; set_of_list; LT; EMPTY_GSPEC; EXTENSION; IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Permutations. *) (* ------------------------------------------------------------------------- *) let PERMUTATION = new_definition `!l. PERMUTATION l <=> REVPERM (LENGTH l) PERMUTED l`;; let PERMUTATION_NIL = prove (`PERMUTATION []`, REWRITE_TAC [PERMUTATION; LENGTH; REVPERM; PERMUTED_RULES]);; let PERMUTATION_LIST_UNIQ = prove (`!l. PERMUTATION l ==> LIST_UNIQ l`, MESON_TAC [PERMUTATION; PERMUTED_LIST_UNIQ; LIST_UNIQ_REVPERM]);; let PERMUTATION_MEM = prove (`!l. PERMUTATION l ==> (!i. MEM i l <=> i < LENGTH l)`, REWRITE_TAC [PERMUTATION] THEN MESON_TAC [MEM_REVPERM; PERMUTED_MEM]);; let PERMUTATION_COUNT = prove (`!l. PERMUTATION l <=> (!x. COUNT x l = if x < LENGTH l then 1 else 0)`, REWRITE_TAC [PERMUTATION; PERMUTED_COUNT; COUNT_REVPERM] THEN MESON_TAC[]);; let LIST_UNIQ_PERMUTED_SET_OF_LIST = prove (`!l1 l2. LIST_UNIQ l1 /\ LIST_UNIQ l2 ==> (l1 PERMUTED l2 <=> set_of_list l1 = set_of_list l2)`, REWRITE_TAC [LIST_UNIQ_COUNT] THEN REPEAT STRIP_TAC THEN REWRITE_TAC [EXTENSION; IN_SET_OF_LIST; PERMUTED_COUNT; MEM_COUNT] THEN ASM_REWRITE_TAC [] THEN MESON_TAC []);; let PERMUTED_LENGTH_MEM = prove (`!l l':A list. LIST_UNIQ l /\ LENGTH l = LENGTH l' /\ (!x. MEM x l <=> MEM x l') ==> l PERMUTED l'`, REWRITE_TAC[GSYM IN_SET_OF_LIST; GSYM EXTENSION] THEN ASM_MESON_TAC[LIST_UNIQ_CARD_LENGTH; LIST_UNIQ_PERMUTED_SET_OF_LIST]);; let PERMUTATION_SET_OF_LIST = prove (`!l. PERMUTATION l <=> set_of_list l = {n | n < LENGTH l}`, GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [REWRITE_TAC [GSYM SET_OF_LIST_REVPERM] THEN ASM_MESON_TAC [LIST_UNIQ_PERMUTED_SET_OF_LIST; PERMUTATION; PERMUTED_LIST_UNIQ; LIST_UNIQ_REVPERM]; REWRITE_TAC [PERMUTATION] THEN ASSERT_TAC `LIST_UNIQ (l:num list)` THENL [REWRITE_TAC [LIST_UNIQ_CARD_LENGTH] THEN FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC [CARD_NUMSEG_LT]; ASM_SIMP_TAC [SET_OF_LIST_REVPERM; LIST_UNIQ_REVPERM; LIST_UNIQ_PERMUTED_SET_OF_LIST]]]);; let MEM_PERMUTATION = prove (`!l. (!n. n < LENGTH l ==> MEM n l) ==> PERMUTATION l`, REPEAT STRIP_TAC THEN REWRITE_TAC [PERMUTATION_SET_OF_LIST] THEN MATCH_MP_TAC (GSYM CARD_SUBSET_LE) THEN REWRITE_TAC [FINITE_SET_OF_LIST; CARD_NUMSEG_LT; CARD_LENGTH] THEN ASM_SIMP_TAC [SUBSET; IN_ELIM_THM; IN_SET_OF_LIST]);; let LIST_UNIQ_MEM_PERMUTATION = prove (`!l. LIST_UNIQ l /\ (!n. MEM n l ==> n < LENGTH l) ==> PERMUTATION l`, REWRITE_TAC [LIST_UNIQ_CARD_LENGTH; PERMUTATION_SET_OF_LIST] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_SUBSET_LE THEN ASM_REWRITE_TAC [FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; IN_SET_OF_LIST; CARD_NUMSEG_LT; LE_REFL]);; let PERMUTATION_UNIQ_LT = prove (`!l. PERMUTATION l <=> LIST_UNIQ l /\ (!n. MEM n l ==> n < LENGTH l)`, MESON_TAC [PERMUTATION_LIST_UNIQ; PERMUTATION_MEM; LIST_UNIQ_MEM_PERMUTATION]);;