(* ========================================================================= *) (* Permuted lists. *) (* *) (* Author: Marco Maggesi *) (* University of Florence, Italy *) (* http://www.math.unifi.it/~maggesi/ *) (* *) (* (c) Copyright, Marco Maggesi, 2005-2007 *) (* ========================================================================= *) needs "Permutation/morelist.ml";; parse_as_infix("PERMUTED",(12,"right"));; (* ------------------------------------------------------------------------- *) (* Permuted lists. *) (* ------------------------------------------------------------------------- *) let PERMUTED_RULES, PERMUTED_INDUCT, PERMUTED_CASES = new_inductive_definition `[] PERMUTED [] /\ (!h t1 t2. t1 PERMUTED t2 ==> h :: t1 PERMUTED h :: t2) /\ (!l1 l2 l3. l1 PERMUTED l2 /\ l2 PERMUTED l3 ==> l1 PERMUTED l3) /\ (!x y t. x :: y :: t PERMUTED y :: x :: t)`;; let PERMUTED_INDUCT_STRONG = derive_strong_induction(PERMUTED_RULES,PERMUTED_INDUCT);; let PERMUTED_RFL = prove (`!l. l PERMUTED l`, LIST_INDUCT_TAC THEN ASM_SIMP_TAC [PERMUTED_RULES]);; let PERMUTED_SYM = prove (`!(xs:A list) l2. xs PERMUTED l2 <=> l2 PERMUTED xs`, SUFFICE_TAC [] `!(xs:A list) l2. xs PERMUTED l2 ==> l2 PERMUTED xs` THEN MATCH_MP_TAC PERMUTED_INDUCT THEN ASM_MESON_TAC [PERMUTED_RULES]);; let PERMUTED_TRS = prove (`!xs l2 l3. xs PERMUTED l2 /\ l2 PERMUTED l3 ==> xs PERMUTED l3`, MESON_TAC [PERMUTED_RULES]);; let PERMUTED_TRS_TAC tm : tactic = MATCH_MP_TAC PERMUTED_TRS THEN EXISTS_TAC tm THEN CONJ_TAC ;; let PERMUTED_TAIL_IMP = prove (`!h t1 t2. t1 PERMUTED t2 ==> h :: t1 PERMUTED h :: t2`, SIMP_TAC [PERMUTED_RULES]);; let PERMUTED_MAP = prove (`!f l1 l2. l1 PERMUTED l2 ==> MAP f l1 PERMUTED MAP f l2`, GEN_TAC THEN MATCH_MP_TAC PERMUTED_INDUCT THEN REWRITE_TAC [MAP; PERMUTED_RULES]);; let PERMUTED_LENGTH = prove (`!l1 l2. l1 PERMUTED l2 ==> LENGTH l1 = LENGTH l2`, MATCH_MP_TAC PERMUTED_INDUCT THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [LENGTH]);; let PERMUTED_SWAP_HEAD = prove (`!a b l. a :: b :: l PERMUTED b :: a :: l`, REWRITE_TAC [PERMUTED_RULES]);; let PERMUTED_MEM = prove (`!(a:A) l1 l2. l1 PERMUTED l2 ==> (MEM a l1 <=> MEM a l2)`, GEN_TAC THEN MATCH_MP_TAC PERMUTED_INDUCT THEN REWRITE_TAC [MEM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MESON_TAC[]);; let PERMUTED_ALL = prove (`!P xs ys. xs PERMUTED ys ==> (ALL P xs <=> ALL P ys)`, GEN_TAC THEN MATCH_MP_TAC PERMUTED_INDUCT THEN REWRITE_TAC [ALL] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN MESON_TAC[]);; let PERMUTED_NIL_EQ_NIL = prove (`(!l:A list. [] PERMUTED l <=> l = []) /\ (!l:A list. l PERMUTED [] <=> l = [])`, SUFFICE_TAC [PERMUTED_SYM] `!l:A list. [] PERMUTED l <=> l = []` THEN LIST_CASES_TAC THEN ASM_REWRITE_TAC [NOT_CONS_NIL; PERMUTED_RFL] THEN MESON_TAC [PERMUTED_LENGTH; LENGTH; NOT_SUC]);; let PERMUTED_SINGLETON = prove (`(!(x:A) l. [x] PERMUTED l <=> l = [x]) /\ (!(x:A) l. l PERMUTED [x] <=> l = [x])`, SUFFICE_TAC [PERMUTED_LENGTH; PERMUTED_RFL] `!l1 l2. l1 PERMUTED l2 ==> LENGTH l1 = LENGTH l2 /\ (!x. l1 = [x:A] <=> l2 = [x])` THEN MATCH_MP_TAC PERMUTED_INDUCT THEN SIMP_TAC [PERMUTED_NIL_EQ_NIL; LENGTH; NOT_CONS_NIL; CONS_11; SUC_INJ; GSYM LENGTH_EQ_NIL]);; let PERMUTED_CONS_DELETE1 = prove (`!(a:A) l. MEM a l ==> l PERMUTED a :: DELETE1 a l`, GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN COND_CASES_TAC THEN ASM_MESON_TAC [PERMUTED_RFL; PERMUTED_TAIL_IMP; PERMUTED_SWAP_HEAD; PERMUTED_TRS]);; let PERMUTED_COUNT = prove (`!l1 l2. l1 PERMUTED l2 <=> (!x:A. COUNT x l1 = COUNT x l2)`, let IFF_EXPAND = MESON [] `(p <=> q) <=> (p ==> q) /\ (q ==> p)` in REWRITE_TAC [IFF_EXPAND; FORALL_AND_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC PERMUTED_INDUCT THEN REWRITE_TAC [COUNT] THEN ASM_MESON_TAC []; ALL_TAC] THEN LIST_INDUCT_TAC THEN REWRITE_TAC [COUNT; PERMUTED_NIL_EQ_NIL] THENL [LIST_CASES_TAC THEN REWRITE_TAC [COUNT; NOT_CONS_NIL] THEN MESON_TAC [NOT_SUC]; ALL_TAC] THEN REPEAT STRIP_TAC THEN ASSERT_TAC `MEM (h:A) l2` THENL [FIRST_X_ASSUM (MP_TAC o SPEC `h:A`) THEN REWRITE_TAC[MEM_COUNT] THEN ARITH_TAC; ALL_TAC] THEN ASSERT_TAC `(h:A) :: t PERMUTED h :: DELETE1 h l2` THENL [MATCH_MP_TAC PERMUTED_TAIL_IMP THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC [COUNT_DELETE1] THEN GEN_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `x:A`) THEN ARITH_TAC; ASM_MESON_TAC [PERMUTED_CONS_DELETE1; PERMUTED_SYM; PERMUTED_TRS]]);; let PERMUTED_TAIL = prove (`!x t1 t2. x :: t1 PERMUTED x :: t2 <=> t1 PERMUTED t2`, REPEAT GEN_TAC THEN REWRITE_TAC [PERMUTED_COUNT; COUNT] THEN MESON_TAC [SUC_INJ]);; let PERMUTED_DELETE1_L = prove (`!(h:A) t l. h :: t PERMUTED l <=> MEM h l /\ t PERMUTED DELETE1 h l`, MESON_TAC [PERMUTED_MEM; MEM; PERMUTED_TAIL; PERMUTED_CONS_DELETE1; PERMUTED_SYM; PERMUTED_TRS]);; let PERMUTED_DELETE1_R = prove (`!(h:A) t l. l PERMUTED h :: t <=> MEM h l /\ DELETE1 h l PERMUTED t`, MESON_TAC [PERMUTED_SYM; PERMUTED_DELETE1_L]);; let PERMUTED_LIST_UNIQ = prove (`!xs ys. xs PERMUTED ys ==> (LIST_UNIQ xs <=> LIST_UNIQ ys)`, SIMP_TAC [PERMUTED_COUNT; LIST_UNIQ_COUNT; MEM_COUNT]);; let PERMUTED_IMP_PAIRWISE = prove (`!(P:A->A->bool) l l'. (!x y. P x y ==> P y x) /\ l PERMUTED l' /\ PAIRWISE P l ==> PAIRWISE P l'`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC PERMUTED_INDUCT_STRONG THEN ASM_SIMP_TAC[PAIRWISE; ALL] THEN MESON_TAC[PERMUTED_ALL]);; let PERMUTED_PAIRWISE = prove (`!(P:A->A->bool) l l. (!x y. P x y ==> P y x) /\ l PERMUTED l' ==> (PAIRWISE P l <=> PAIRWISE P l')`, MESON_TAC[PERMUTED_IMP_PAIRWISE; PERMUTED_SYM]);; let PERMUTED_APPEND_SWAP = prove (`!l1 l2. (APPEND l1 l2) PERMUTED (APPEND l2 l1)`, REWRITE_TAC[PERMUTED_COUNT; COUNT_APPEND] THEN ARITH_TAC);; let PERMUTED_APPEND_LCANCEL = prove (`!l1 l2 l3:A list. (APPEND l1 l2) PERMUTED (APPEND l1 l3) <=> l2 PERMUTED l3`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; PERMUTED_TAIL]);; let PERMUTED_APPEND_RCANCEL = prove (`!l1 l2 l3:A list. (APPEND l1 l3) PERMUTED (APPEND l2 l3) <=> l1 PERMUTED l2`, MESON_TAC[PERMUTED_APPEND_SWAP; PERMUTED_APPEND_LCANCEL; PERMUTED_TRS; PERMUTED_SYM]);; let PERMUTED_APPEND_CONG = prove (`!l1 l1' l2 l2'. l1 PERMUTED l1' /\ l2 PERMUTED l2' ==> (APPEND l1 l2) PERMUTED (APPEND l1' l2')`, MESON_TAC[PERMUTED_APPEND_LCANCEL; PERMUTED_APPEND_RCANCEL; PERMUTED_TRS]);;