section \Dyadic Rational Representation of Real\ theory Float_Real imports "HOL-Library.Float" Optimize_Float begin text \\label{sec:floatreal}\ code_datatype real_of_float abbreviation float_of_nat :: "nat \ float" where "float_of_nat \ of_nat" abbreviation float_of_int :: "int \ float" where "float_of_int \ of_int" text\Collapse nested embeddings\ text \Operations\ text \Undo code setup for @{term Ratreal}.\ lemma of_rat_numeral_eq [code_abbrev]: "real_of_float (numeral w) = Ratreal (numeral w)" by simp lemma zero_real_code [code]: "0 = real_of_float 0" by simp lemma one_real_code [code]: "1 = real_of_float 1" by simp lemma [code_abbrev]: "(real_of_float (of_int a) :: real) = (Ratreal (Rat.of_int a) :: real)" by (auto simp: Rat.of_int_def ) lemma [code_abbrev]: "real_of_float 0 \ Ratreal 0" by simp lemma [code_abbrev]: "real_of_float 1 = Ratreal 1" by simp lemmas compute_real_of_float[code del] lemmas [code del] = real_equal_code real_less_eq_code real_less_code real_plus_code real_times_code real_uminus_code real_minus_code real_inverse_code real_divide_code real_floor_code Float.compute_truncate_down Float.compute_truncate_up lemma real_equal_code [code]: "HOL.equal (real_of_float x) (real_of_float y) \ HOL.equal x y" by (metis (poly_guards_query) equal real_of_float_inverse) abbreviation FloatR::"int\int\real" where "FloatR a b \ real_of_float (Float a b)" lemma real_less_eq_code' [code]: "real_of_float x \ real_of_float y \ x \ y" and real_less_code' [code]: "real_of_float x < real_of_float y \ x < y" and real_plus_code' [code]: "real_of_float x + real_of_float y = real_of_float (x + y)" and real_times_code' [code]: "real_of_float x * real_of_float y = real_of_float (x * y)" and real_uminus_code' [code]: "- real_of_float x = real_of_float (- x)" and real_minus_code' [code]: "real_of_float x - real_of_float y = real_of_float (x - y)" and real_inverse_code' [code]: "inverse (FloatR a b) = (if FloatR a b = 2 then FloatR 1 (-1) else if a = 1 then FloatR 1 (- b) else Code.abort (STR ''inverse not of 2'') (\_. inverse (FloatR a b)))" and real_divide_code' [code]: "FloatR a b / FloatR c d = (if FloatR c d = 2 then if a mod 2 = 0 then FloatR (a div 2) b else FloatR a (b - 1) else if c = 1 then FloatR a (b - d) else Code.abort (STR ''division not by 2'') (\_. FloatR a b / FloatR c d))" and real_floor_code' [code]: "floor (real_of_float x) = int_floor_fl x" and real_abs_code' [code]: "abs (real_of_float x) = real_of_float (abs x)" by (auto simp add: int_floor_fl.rep_eq powr_diff powr_minus inverse_eq_divide) lemma compute_round_down[code]: "round_down prec (real_of_float f) = real_of_float (float_down prec f)" by simp lemma compute_round_up[code]: "round_up prec (real_of_float f) = real_of_float (float_up prec f)" by simp lemma compute_truncate_down[code]: "truncate_down prec (real_of_float f) = real_of_float (float_round_down prec f)" by (simp add: Float.float_round_down.rep_eq truncate_down_def) lemma compute_truncate_up[code]: "truncate_up prec (real_of_float f) = real_of_float (float_round_up prec f)" by (simp add: float_round_up.rep_eq truncate_up_def) lemma [code]: "real_divl p (real_of_float x) (real_of_float y) = real_of_float (float_divl p x y)" by (simp add: float_divl.rep_eq real_divl_def) lemma [code]: "real_divr p (real_of_float x) (real_of_float y) = real_of_float (float_divr p x y)" by (simp add: float_divr.rep_eq real_divr_def) lemmas [code] = real_of_float_inverse end