(* Title: Domain Quantales Author: Victor Gomes, Georg Struth Maintainer: Victor Gomes Georg Struth *) section \Component for Recursive Programs\ theory Domain_Quantale imports KAD.Modal_Kleene_Algebra begin text \This component supports the verification and step-wise refinement of recursive programs in a partial correctness setting.\ notation times (infixl "\" 70) and bot ("\") and top ("\") and inf (infixl "\" 65) and sup (infixl "\" 65) subsection \Lattice-Ordered Monoids with Domain\ class bd_lattice_ordered_monoid = bounded_lattice + distrib_lattice + monoid_mult + assumes left_distrib: "x \ (y \ z) = x \ y \ x \ z" and right_distrib: "(x \ y) \ z = x \ z \ y \ z" and bot_annil [simp]: "\ \ x = \" and bot_annir [simp]: "x \ \ = \" begin sublocale semiring_one_zero "(\)" "(\)" "1" "bot" by (standard, auto simp: sup.assoc sup.commute sup_left_commute left_distrib right_distrib sup_absorb1) sublocale dioid_one_zero "(\)" "(\)" "1" bot "(\)" "(<)" by (standard, simp add: le_iff_sup, auto) end no_notation ads_d ("d") and ars_r ("r") and antirange_op ("ar _" [999] 1000) class domain_bdlo_monoid = bd_lattice_ordered_monoid + assumes rdv: "(z \ x \ top) \ y = z \ y \ x \ top" begin definition "d x = 1 \ x \ \" sublocale ds: domain_semiring "(\)" "(\)" "1" "\" "d" "(\)" "(<)" proof standard fix x y show "x \ d x \ x = d x \ x" by (metis d_def inf_sup_absorb left_distrib mult_1_left mult_1_right rdv sup.absorb_iff1 sup.idem sup.left_commute top_greatest) show "d (x \ d y) = d (x \ y)" by (simp add: d_def inf_absorb2 rdv mult_assoc) show "d x \ 1 = 1" by (simp add: d_def sup.commute) show "d bot = bot" by (simp add: d_def inf.absorb1 inf.commute) show "d (x \ y) = d x \ d y" by (simp add: d_def inf_sup_distrib1) qed end subsection\Boolean Monoids with Domain\ class boolean_monoid = boolean_algebra + monoid_mult + assumes left_distrib': "x \ (y \ z) = x \ y \ x \ z" and right_distrib': "(x \ y) \ z = x \ z \ y \ z" and bot_annil' [simp]: "\ \ x = \" and bot_annir' [simp]: "x \ \ = \" begin subclass bd_lattice_ordered_monoid by (standard, simp_all add: left_distrib' right_distrib') lemma inf_bot_iff_le: "x \ y = \ \ x \ -y" by (metis le_iff_inf inf_sup_distrib1 inf_top_right sup_bot.left_neutral sup_compl_top compl_inf_bot inf.assoc inf_bot_right) end class domain_boolean_monoid = boolean_monoid + assumes rdv': "(z \ x \ \) \ y = z \ y \ x \ \" begin sublocale dblo: domain_bdlo_monoid "1" "(\)" "(\)" "(\)" "(<)" "(\)" "\" "\" by (standard, simp add: rdv') definition "a x = 1 \ -(dblo.d x)" lemma a_d_iff: "a x = 1 \ -(x \ \)" by (clarsimp simp: a_def dblo.d_def inf_sup_distrib1) lemma topr: "-(x \ \) \ \ = -(x \ \)" proof (rule order.antisym) show "-(x \ \) \ -(x \ \) \ \" by (metis mult_isol_var mult_oner order_refl top_greatest) have "-(x \ \) \ (x \ \) = \" by simp hence "(-(x \ \) \ (x \ \)) \ \ = \" by simp hence "-(x \ \) \ \ \ (x \ \) = \" by (metis rdv') thus "-(x \ \) \ \ \ -(x \ \)" by (simp add: inf_bot_iff_le) qed lemma dd_a: "dblo.d x = a (a x)" by (metis a_d_iff dblo.d_def double_compl inf_top.left_neutral mult_1_left rdv' topr) lemma ad_a [simp]: "a (dblo.d x) = a x" by (simp add: a_def) lemma da_a [simp]: "dblo.d (a x) = a x" using ad_a dd_a by auto lemma a1 [simp]: "a x \ x = \" proof - have "a x \ x \ \ = \" by (metis a_d_iff inf_compl_bot mult_1_left rdv' topr) then show ?thesis by (metis (no_types) dblo.d_def dblo.ds.domain_very_strict inf_bot_right) qed lemma a2 [simp]: "a (x \ y) \ a (x \ a (a y)) = a (x \ a (a y))" by (metis a_def dblo.ds.dsr2 dd_a sup.idem) lemma a3 [simp]: "a (a x) \ a x = 1" by (metis a_def da_a inf.commute sup.commute sup_compl_top sup_inf_absorb sup_inf_distrib1) subclass domain_bdlo_monoid .. text \The next statement shows that every boolean monoid with domain is an antidomain semiring. In this setting the domain operation has been defined explicitly.\ sublocale ad: antidomain_semiring a "(\)" "(\)" "1" "\" "(\)" "(<)" rewrites ad_eq: "ad.ads_d x = d x" proof - show "class.antidomain_semiring a (\) (\) 1 \ (\) (<)" by (standard, simp_all) then interpret ad: antidomain_semiring a "(\)" "(\)" "1" "\" "(\)" "(<)" . show "ad.ads_d x = d x" by (simp add: ad.ads_d_def dd_a) qed end subsection\Boolean Monoids with Range\ class range_boolean_monoid = boolean_monoid + assumes ldv': "y \ (z \ \ \ x) = y \ z \ \ \ x" begin definition "r x = 1 \ \ \ x" definition "ar x = 1 \ -(r x)" lemma ar_r_iff: "ar x = 1 \ -(\ \ x)" by (simp add: ar_def inf_sup_distrib1 r_def) lemma topl: "\\(-(\ \ x)) = -(\ \ x)" proof (rule order.antisym) show "\ \ - (\ \ x) \ - (\ \ x)" by (metis bot_annir' compl_inf_bot inf_bot_iff_le ldv') show "- (\ \ x) \ \ \ - (\ \ x)" by (metis inf_le2 inf_top.right_neutral mult_1_left mult_isor) qed lemma r_ar: "r x = ar (ar x)" by (metis ar_r_iff double_compl inf.commute inf_top.right_neutral ldv' mult_1_right r_def topl) lemma ar_ar [simp]: "ar (r x) = ar x" by (simp add: ar_def ldv' r_def) lemma rar_ar [simp]: "r (ar x) = ar x" using r_ar ar_ar by force lemma ar1 [simp]: "x \ ar x = \" proof - have "\ \ x \ ar x = \" by (metis ar_r_iff inf_compl_bot ldv' mult_oner topl) then show ?thesis by (metis inf_bot_iff_le inf_le2 inf_top.right_neutral mult_1_left mult_isor mult_oner topl) qed lemma ars: "r (r x \ y) = r (x \ y)" by (metis inf.commute inf_top.right_neutral ldv' mult_oner mult_assoc r_def) lemma ar2 [simp]: "ar (x \ y) \ ar (ar (ar x) \ y) = ar (ar (ar x) \ y)" by (metis ar_def ars r_ar sup.idem) lemma ar3 [simp]: "ar (ar x) \ ar x = 1 " by (metis ar_def rar_ar inf.commute sup.commute sup_compl_top sup_inf_absorb sup_inf_distrib1) sublocale ar: antirange_semiring "(\)" "(\)" "1" "\" ar "(\)" "(<)" rewrites ar_eq: "ar.ars_r x = r x" proof - show "class.antirange_semiring (\) (\) 1 \ ar (\) (<)" by (standard, simp_all) then interpret ar: antirange_semiring "(\)" "(\)" "1" "\" ar "(\)" "(<)" . show "ar.ars_r x = r x" by (simp add: ar.ars_r_def r_ar) qed end subsection \Quantales\ text \This part will eventually move into an AFP quantale entry.\ class quantale = complete_lattice + monoid_mult + assumes Sup_distr: "Sup X \ y = Sup {z. \x \ X. z = x \ y}" and Sup_distl: "x \ Sup Y = Sup {z. \y \ Y. z = x \ y}" begin lemma bot_annil'' [simp]: "\ \ x = \" using Sup_distr[where X="{}"] by auto lemma bot_annirr'' [simp]: "x \ \ = \" using Sup_distl[where Y="{}"] by auto lemma sup_distl: "x \ (y \ z) = x \ y \ x \ z" using Sup_distl[where Y="{y, z}"] by (fastforce intro!: Sup_eqI) lemma sup_distr: "(x \ y) \ z = x \ z \ y \ z" using Sup_distr[where X="{x, y}"] by (fastforce intro!: Sup_eqI) sublocale semiring_one_zero "(\)" "(\)" "1" "\" by (standard, auto simp: sup.assoc sup.commute sup_left_commute sup_distl sup_distr) sublocale dioid_one_zero "(\)" "(\)" "1" "\" "(\)" "(<)" by (standard, simp add: le_iff_sup, auto) lemma Sup_sup_pred: "x \ Sup{y. P y} = Sup{y. y = x \ P y}" apply (rule order.antisym) apply (simp add: Collect_mono Sup_subset_mono Sup_upper) using Sup_least Sup_upper le_supI2 by fastforce definition star :: "'a \ 'a" where "star x = (SUP i. x ^ i)" lemma star_def_var1: "star x = Sup{y. \i. y = x ^ i}" by (simp add: star_def full_SetCompr_eq) lemma star_def_var2: "star x = Sup{x ^ i |i. True}" by (simp add: star_def full_SetCompr_eq) lemma star_unfoldl' [simp]: "1 \ x \ (star x) = star x" proof - have "1 \ x \ (star x) = x ^ 0 \ x \ Sup{y. \i. y = x ^ i}" by (simp add: star_def_var1) also have "... = x ^ 0 \ Sup{y. \i. y = x ^ (i + 1)}" by (simp add: Sup_distl, metis) also have "... = Sup{y. y = x ^ 0 \ (\i. y = x ^ (i + 1))}" using Sup_sup_pred by simp also have "... = Sup{y. \i. y = x ^ i}" by (metis Suc_eq_plus1 power.power.power_Suc power.power_eq_if) finally show ?thesis by (simp add: star_def_var1) qed lemma star_unfoldr' [simp]: "1 \ (star x) \ x = star x" proof - have "1 \ (star x) \ x = x ^ 0 \ Sup{y. \i. y = x ^ i} \ x" by (simp add: star_def_var1) also have "... = x ^ 0 \ Sup{y. \i. y = x ^ i \ x}" by (simp add: Sup_distr, metis) also have "... = x ^ 0 \ Sup{y. \i. y = x ^ (i + 1)}" using power_Suc2 by simp also have "... = Sup{y. y = x ^ 0 \ (\i. y = x ^ (i + 1))}" using Sup_sup_pred by simp also have "... = Sup{y. \i. y = x ^ i}" by (metis Suc_eq_plus1 power.power.power_Suc power.power_eq_if) finally show ?thesis by (simp add: star_def_var1) qed lemma (in dioid_one_zero) power_inductl: "z + x \ y \ y \ (x ^ n) \ z \ y" proof (induct n) case 0 show ?case using "0.prems" by simp case Suc thus ?case by (simp, metis mult.assoc mult_isol order_trans) qed lemma (in dioid_one_zero) power_inductr: "z + y \ x \ y \ z \ (x ^ n) \ y" proof (induct n) case 0 show ?case using "0.prems" by auto case Suc { fix n assume "z + y \ x \ y \ z \ x ^ n \ y" and "z + y \ x \ y" hence "z \ x ^ n \ y" by simp also have "z \ x ^ Suc n = z \ x \ x ^ n" by (metis mult.assoc power_Suc) moreover have "... = (z \ x ^ n) \ x" by (metis mult.assoc power_commutes) moreover have "... \ y \ x" by (metis calculation(1) mult_isor) moreover have "... \ y" using \z + y \ x \ y\ by simp ultimately have "z \ x ^ Suc n \ y" by simp } thus ?case by (metis Suc) qed lemma star_inductl': "z \ x \ y \ y \ (star x) \ z \ y" proof - assume "z \ x \ y \ y" hence "\i. x ^ i \ z \ y" by (simp add: power_inductl) hence "Sup{w. \i. w = x ^ i \ z} \ y" by (intro Sup_least, fast) hence "Sup{w. \i. w = x ^ i} \ z \ y" using Sup_distr Sup_le_iff by auto thus "(star x) \ z \ y" by (simp add: star_def_var1) qed lemma star_inductr': "z \ y \ x \ y \ z \ (star x) \ y" proof - assume "z \ y \ x \ y" hence "\i. z \ x ^ i \ y" by (simp add: power_inductr) hence "Sup{w. \i. w = z \ x ^ i} \ y" by (intro Sup_least, fast) hence "z \ Sup{w. \i. w = x ^ i} \ y" using Sup_distl Sup_le_iff by auto thus "z \ (star x) \ y" by (simp add: star_def_var1) qed sublocale ka: kleene_algebra "(\)" "(\)" "1" "\" "(\)" "(<)" star by standard (simp_all add: star_inductl' star_inductr') end text \Distributive quantales are often assumed to satisfy infinite distributivity laws between joins and meets, but finite ones suffice for our purposes.\ class distributive_quantale = quantale + distrib_lattice begin subclass bd_lattice_ordered_monoid by (standard, simp_all add: distrib_left) lemma "(1 \ x \ \) \ x = x" (* nitpick [expect=genuine]*) oops end subsection \Domain Quantales\ class domain_quantale = distributive_quantale + assumes rdv'': "(z \ x \ \) \ y = z \ y \ x \ \" begin subclass domain_bdlo_monoid by (standard, simp add: rdv'') end class range_quantale = distributive_quantale + assumes ldv'': "y \ (z \ \ \ x) = y \ z \ \ \ x" class boolean_quantale = quantale + complete_boolean_algebra begin subclass boolean_monoid by (standard, simp_all add: sup_distl) lemma "(1 \ x \ \) \ x = x" (*nitpick[expect=genuine]*) oops lemma "(1 \ -(x \ \)) \ x = \" (*nitpick[expect=genuine]*) oops end subsection\Boolean Domain Quantales\ class domain_boolean_quantale = domain_quantale + boolean_quantale begin subclass domain_boolean_monoid by (standard, simp add: rdv'') lemma fbox_eq: "ad.fbox x q = Sup{d p |p. d p \ x \ x \ d q}" apply (rule Sup_eqI[symmetric]) apply clarsimp using ad.fbox_demodalisation3 ad.fbox_simp apply auto[1] apply clarsimp by (metis ad.fbox_def ad.fbox_demodalisation3 ad.fbox_simp da_a eq_refl) lemma fdia_eq: "ad.fdia x p = Inf{d q |q. x \ d p \ d q \ x}" apply (rule Inf_eqI[symmetric]) apply clarsimp using ds.fdemodalisation2 apply auto[1] apply clarsimp by (metis ad.fd_eq_fdia ad.fdia_def da_a double_compl ds.fdemodalisation2 inf_bot_iff_le inf_compl_bot) text \The specification statement can be defined explicitly.\ definition R :: "'a \ 'a \ 'a" where "R p q \ Sup{x. (d p) \ x \ x \ d q}" lemma "x \ R p q \ d p \ ad.fbox x (d q)" proof (simp add: R_def ad.kat_1_equiv ad.kat_2_equiv) assume "x \ Sup{x. d p \ x \ a q = \}" hence "d p \ x \ a q \ d p \ Sup{x. d p \ x \ a q = \} \ a q " using mult_double_iso by blast also have "... = Sup{d p \ x \ a q |x. d p \ x \ a q = \}" apply (subst Sup_distl) apply (subst Sup_distr) apply clarsimp by metis also have "... = \" by (auto simp: Sup_eqI) finally show ?thesis using ad.fbox_demodalisation3 ad.kat_3 ad.kat_4 le_bot by blast qed lemma "d p \ ad.fbox x (d q) \ x \ R p q" apply (simp add: R_def) apply (rule Sup_upper) apply simp using ad.fbox_demodalisation3 ad.fbox_simp apply auto[1] done end subsection\Relational Model of Boolean Domain Quantales\ interpretation rel_dbq: domain_boolean_quantale \(-)\ uminus \(\)\ \(\)\ \(\)\ \(\)\ \{}\ UNIV \\\ \\\ Id \(O)\ by standard auto subsection\Modal Boolean Quantales\ class range_boolean_quantale = range_quantale + boolean_quantale begin subclass range_boolean_monoid by (standard, simp add: ldv'') lemma fbox_eq: "ar.bbox x (r q) = Sup{r p |p. x \ r p \ (r q) \ x}" apply (rule Sup_eqI[symmetric]) apply clarsimp using ar.ardual.fbox_demodalisation3 ar.ardual.fbox_simp apply auto[1] apply clarsimp by (metis ar.ardual.fbox_def ar.ardual.fbox_demodalisation3 eq_refl rar_ar) lemma fdia_eq: "ar.bdia x (r p) = Inf{r q |q. (r p) \ x \ x \ r q}" apply (rule Inf_eqI[symmetric]) apply clarsimp using ar.ars_r_def ar.ardual.fdemodalisation22 ar.ardual.kat_3_equiv_opp ar.ardual.kat_4_equiv_opp apply auto[1] apply clarsimp using ar.bdia_def ar.ardual.ds.fdemodalisation2 r_ar by fastforce end class modal_boolean_quantale = domain_boolean_quantale + range_boolean_quantale + assumes domrange' [simp]: "d (r x) = r x" and rangedom' [simp]: "r (d x) = d x" begin sublocale mka: modal_kleene_algebra "(\)" "(\)" 1 \ "(\)" "(<)" star a ar by standard (simp_all add: ar_eq ad_eq) end no_notation fbox ("( |_] _)" [61,81] 82) and antidomain_semiringl_class.fbox ("( |_] _)" [61,81] 82) notation ad.fbox ("( |_] _)" [61,81] 82) subsection \Recursion Rule\ lemma recursion: "mono (f :: 'a \ 'a :: domain_boolean_quantale) \ (\x. d p \ |x] d q \ d p \ |f x] d q) \ d p \ |lfp f] d q" apply (erule lfp_ordinal_induct [where f=f], simp) by (auto simp: ad.addual.ardual.fbox_demodalisation3 Sup_distr Sup_distl intro: Sup_mono) text \We have already tested this rule in the context of test quantales~\cite{ArmstrongGS15}, which is based on a formalisation of quantales that is currently not in the AFP. The two theories will be merged as soon as the quantale is available in the AFP.\ end