import challenge_notations import challenge_prerequisites /-! # Liquid Tensor Experiment ## The main challenge The main challenge of the liquid tensor experiment is a formalisation of the first theorem in Peter Scholze's blogpost https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/ Theorem 1.1 (Clausen--Scholze) Let `0 < p' < p ≤ 1` be real numbers, let `S` be a profinite set, and let `V` be a `p`-Banach space. Let `ℳ p' S` be the space of `p'`-measures on `S`. Then $$ Ext^i (ℳ p' S, V) = 0 $$ for `i ≥ 1`. -/ noncomputable theory open_locale liquid_tensor_experiment nnreal zero_object open liquid_tensor_experiment category_theory category_theory.limits variables (p' p : ℝ≥0) [fact (0 < p')] [fact (p' < p)] [fact (p ≤ 1)] theorem liquid_tensor_experiment (S : Profinite.{0}) (V : pBanach.{0} p) : ∀ i > 0, Ext i (ℳ_{p'} S) V ≅ 0 := begin intros i hi, apply is_zero.iso_zero, revert i, haveI : fact (0 < (p:ℝ)) := ⟨lt_trans (fact.out _ : 0 < p') (fact.out _)⟩, haveI : fact (p' < 1) := ⟨lt_of_lt_of_le (fact.out _ : p' < p) (fact.out _)⟩, erw is_zero_iff_epi_and_is_iso _ _ (V : Condensed.{0 1 2} Ab) (laurent_measures.short_exact p' S), let := pBanach.choose_seminormed_add_comm_group V, let := pBanach.choose_normed_with_aut V 2⁻¹, haveI : fact (0 < (2⁻¹ : ℝ≥0) ^ (p : ℝ)) := r_pos', convert laurent_measures.epi_and_is_iso p' p S ⟨V⟩ _ using 1, intro v, rw [pBanach.choose_normed_with_aut_T_inv, inv_inv, two_smul, two_nsmul], end