import challenge_notations import challenge_prerequisites import algebra.order.complete_field /-! This file shows that `ℝ` is a conditionally complete linearly ordered field. Key result from mathlib: [#3292](https://github.com/leanprover-community/mathlib/pull/3292) -/ noncomputable theory open_locale liquid_tensor_experiment nnreal zero_object open liquid_tensor_experiment category_theory category_theory.limits opposite example : conditionally_complete_linear_ordered_field ℝ := infer_instance example : ℝ≥0 = {r : ℝ // r ≥ 0} := rfl -- Any conditionally complete linear ordered field is isomorphic (as an ordered ring) to `ℝ`. example {R : Type*} [conditionally_complete_linear_ordered_field R] : R ≃+*o ℝ := default -- The isomorphism above is unique example {R : Type*} [conditionally_complete_linear_ordered_field R] (e₁ e₂ : R ≃+*o ℝ) : e₁ = e₂ := subsingleton.elim _ _