import topology.continuous_function.compact import for_mathlib.SemiNormedGroup import locally_constant.completion_aux import free_pfpng.main import prop819 . noncomputable theory universes u open category_theory opposite ProFiltPseuNormGrp₁ open function (surjective) open_locale nnreal variables (S : Profinite.{u}) variables (V : SemiNormedGroup.{u}) [complete_space V] [separated_space V] variables (V' : Type u) [normed_add_comm_group V'] [complete_space V'] def LCC : Profinite.{u}ᵒᵖ ⥤ Ab.{u} := SemiNormedGroup.LCC.obj V ⋙ forget₂ _ _ local attribute [instance] locally_constant.seminormed_add_comm_group locally_constant.pseudo_metric_space open uniform_space lemma continuous_map.bdd_above_range_norm (f : C(S, V')) : bdd_above (set.range (λ (s : ↥S), ∥f s∥)) := (is_compact_range $ continuous_norm.comp f.continuous).bdd_above def Condensed.of_top_ab_map_normed_group_hom {S T : Profinite.{u}ᵒᵖ} (f : S ⟶ T) : normed_add_group_hom C(_, V') C(_, V') := { to_fun := (Condensed.of_top_ab.presheaf.{u} V').map f, map_add' := λ _ _, add_monoid_hom.map_add _ _ _, bound' := begin refine ⟨1, λ g, _⟩, rw [one_mul, continuous_map.norm_eq_supr_norm], casesI is_empty_or_nonempty.{u+1} (unop T : Profinite), { simp only [real.csupr_empty], apply norm_nonneg }, apply csupr_le, intro s, rw [continuous_map.norm_eq_supr_norm], exact le_csupr (continuous_map.bdd_above_range_norm _ _ _) (f.unop s), end } lemma Condensed.of_top_ab_map_continuous {S T : Profinite.{u}ᵒᵖ} (f : S ⟶ T) : @continuous C(_, V') C(_, V') _ _ ((Condensed.of_top_ab.presheaf.{u} V').map f) := (Condensed.of_top_ab_map_normed_group_hom V' f).continuous lemma locally_constant.to_continuous_map_isometry : isometry (locally_constant.to_continuous_map : locally_constant S V' → C(S, V')) := begin intros f g, simp only [edist_dist, dist_eq_norm, continuous_map.norm_eq_supr_norm, locally_constant.norm_def, locally_constant.to_continuous_map_eq_coe, continuous_map.coe_sub, locally_constant.coe_continuous_map, pi.sub_apply], refl, end lemma locally_constant.to_continuous_map_uniform_inducing : uniform_inducing (locally_constant.to_continuous_map : locally_constant S V' → C(S, V')) := (locally_constant.to_continuous_map_isometry S V').uniform_inducing lemma locally_constant.to_continuous_map_uniform_continuous : uniform_continuous (locally_constant.to_continuous_map : locally_constant S V' → C(S, V')) := (locally_constant.to_continuous_map_uniform_inducing S V').uniform_continuous lemma locally_constant.to_continuous_map_dense_range : dense_range (locally_constant.to_continuous_map : locally_constant S V' → C(S, V')) := locally_constant.density.loc_const_dense _ def locally_constant.pkg : abstract_completion (locally_constant S V') := { space := C(S, V'), coe := locally_constant.to_continuous_map, uniform_struct := by apply_instance, complete := by apply_instance, separation := by apply_instance, uniform_inducing := locally_constant.to_continuous_map_uniform_inducing S V', dense := locally_constant.to_continuous_map_dense_range S V', } def LCC_iso_Cond_of_top_ab_equiv : completion (locally_constant S V') ≃ C(S, V') := (@completion.cpkg (locally_constant S V') _).compare_equiv (locally_constant.pkg S V') def LCC_iso_Cond_of_top_ab_add_equiv : completion (locally_constant S V') ≃+ C(S, V') := { to_fun := completion.extension locally_constant.to_continuous_map, map_add' := begin intros f g, apply completion.induction_on₂ f g, { apply is_closed_eq, { exact completion.continuous_extension.comp continuous_add }, { exact (completion.continuous_extension.comp continuous_fst).add (completion.continuous_extension.comp continuous_snd), } }, { clear f g, intros f g, rw [← completion.coe_add, completion.extension_coe, completion.extension_coe, completion.extension_coe], { refl }, all_goals { apply locally_constant.to_continuous_map_uniform_continuous } } end, .. LCC_iso_Cond_of_top_ab_equiv S V' } lemma LCC_iso_Cond_of_top_ab_natural {S T : Profinite.{u}} (f : S ⟶ T) : LCC_iso_Cond_of_top_ab_add_equiv S V' ∘ completion.map (locally_constant.comap f) = (Condensed.of_top_ab.presheaf.{u} V').map f.op ∘ LCC_iso_Cond_of_top_ab_add_equiv T V' := begin dsimp [LCC_iso_Cond_of_top_ab_add_equiv], apply completion.ext, { refine completion.continuous_extension.comp completion.continuous_map, }, { refine (Condensed.of_top_ab_map_continuous _ _).comp completion.continuous_extension, }, intro g, ext s, simp only [function.comp_app], rw [completion.map_coe, completion.extension_coe, completion.extension_coe, locally_constant.to_continuous_map_eq_coe, locally_constant.coe_continuous_map, locally_constant.to_continuous_map_eq_coe, locally_constant.coe_comap], { refl }, { exact f.continuous }, { apply locally_constant.to_continuous_map_uniform_continuous }, { apply locally_constant.to_continuous_map_uniform_continuous }, { exact (locally_constant.comap_hom f f.2).uniform_continuous, } end def LCC_iso_Cond_of_top_ab : LCC.{u} V ≅ Condensed.of_top_ab.presheaf.{u} V := nat_iso.of_components (λ S, add_equiv.to_AddCommGroup_iso $ LCC_iso_Cond_of_top_ab_add_equiv (unop S) V) begin intros S T f, ext1 φ, have := LCC_iso_Cond_of_top_ab_natural V f.unop, convert congr_fun this φ using 1, clear this, delta LCC SemiNormedGroup.LCC, simp only [add_equiv.to_AddCommGroup_iso_hom, category_theory.comp_apply, add_equiv.coe_to_add_monoid_hom, add_equiv.apply_eq_iff_eq, functor.comp_map, curry.obj_obj_map, uncurry.obj_map, category_theory.functor.map_id, nat_trans.id_app, SemiNormedGroup.LocallyConstant_obj_map, SemiNormedGroup.Completion_map], erw [category.id_comp], refl, end def Condensed_LCC : Condensed.{u} Ab.{u+1} := { val := LCC.{u} V ⋙ Ab.ulift.{u+1}, cond := begin let e := LCC_iso_Cond_of_top_ab V, let e' := iso_whisker_right e Ab.ulift.{u+1}, apply presheaf.is_sheaf_of_iso proetale_topology.{u} e', exact (Condensed.of_top_ab _).2, end } def Condensed_LCC_iso_of_top_ab : Condensed_LCC V ≅ Condensed.of_top_ab V := Sheaf.iso.mk _ _ $ iso_whisker_right (LCC_iso_Cond_of_top_ab _) _