/- Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Violeta Hernández Palacios -/ import data.polynomial.cardinal import ring_theory.algebraic /-! ### Cardinality of algebraic numbers In this file, we prove variants of the following result: the cardinality of algebraic numbers under an R-algebra is at most `# polynomial R * ℵ₀`. Although this can be used to prove that real or complex transcendental numbers exist, a more direct proof is given by `liouville.is_transcendental`. -/ universes u v open cardinal polynomial open_locale cardinal namespace algebraic theorem aleph_0_le_cardinal_mk_of_char_zero (R A : Type*) [comm_ring R] [is_domain R] [ring A] [algebra R A] [char_zero A] : ℵ₀ ≤ #{x : A // is_algebraic R x} := @mk_le_of_injective (ulift ℕ) {x : A | is_algebraic R x} (λ n, ⟨_, is_algebraic_nat n.down⟩) (λ m n hmn, by simpa using hmn) section lift variables (R : Type u) (A : Type v) [comm_ring R] [comm_ring A] [is_domain A] [algebra R A] [no_zero_smul_divisors R A] theorem cardinal_mk_lift_le_mul : cardinal.lift.{u v} (#{x : A // is_algebraic R x}) ≤ cardinal.lift.{v u} (#(polynomial R)) * ℵ₀ := begin rw [←mk_ulift, ←mk_ulift], let g : ulift.{u} {x : A | is_algebraic R x} → ulift.{v} (polynomial R) := λ x, ulift.up (classical.some x.1.2), apply cardinal.mk_le_mk_mul_of_mk_preimage_le g (λ f, _), suffices : fintype (g ⁻¹' {f}), { exact @mk_le_aleph_0 _ (@fintype.to_encodable _ this) }, by_cases hf : f.1 = 0, { convert set.fintype_empty, apply set.eq_empty_iff_forall_not_mem.2 (λ x hx, _), simp only [set.mem_preimage, set.mem_singleton_iff] at hx, apply_fun ulift.down at hx, rw hf at hx, exact (classical.some_spec x.1.2).1 hx }, let h : g ⁻¹' {f} → f.down.root_set A := λ x, ⟨x.1.1.1, (mem_root_set_iff hf x.1.1.1).2 begin have key' : g x = f := x.2, simp_rw ← key', exact (classical.some_spec x.1.1.2).2 end⟩, apply fintype.of_injective h (λ _ _ H, _), simp only [subtype.val_eq_coe, subtype.mk_eq_mk] at H, exact subtype.ext (ulift.down_injective (subtype.ext H)) end theorem cardinal_mk_lift_le_max : cardinal.lift.{u v} (#{x : A // is_algebraic R x}) ≤ max (cardinal.lift.{v u} (#R)) ℵ₀ := (cardinal_mk_lift_le_mul R A).trans $ (mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans $ by simp [le_total] theorem cardinal_mk_lift_le_of_infinite [infinite R] : cardinal.lift.{u v} (#{x : A // is_algebraic R x}) ≤ cardinal.lift.{v u} (#R) := (cardinal_mk_lift_le_max R A).trans $ by simp variable [encodable R] @[simp] theorem countable_of_encodable : set.countable {x : A | is_algebraic R x} := begin rw [←mk_set_le_aleph_0, ←lift_le], apply (cardinal_mk_lift_le_max R A).trans, simp end @[simp] theorem cardinal_mk_of_encodable_of_char_zero [char_zero A] [is_domain R] : #{x : A // is_algebraic R x} = ℵ₀ := le_antisymm (by simp) (aleph_0_le_cardinal_mk_of_char_zero R A) end lift section non_lift variables (R A : Type u) [comm_ring R] [comm_ring A] [is_domain A] [algebra R A] [no_zero_smul_divisors R A] theorem cardinal_mk_le_mul : #{x : A // is_algebraic R x} ≤ #(polynomial R) * ℵ₀ := by { rw [←lift_id (#_), ←lift_id (#(polynomial R))], exact cardinal_mk_lift_le_mul R A } theorem cardinal_mk_le_max : #{x : A // is_algebraic R x} ≤ max (#R) ℵ₀ := by { rw [←lift_id (#_), ←lift_id (#R)], exact cardinal_mk_lift_le_max R A } theorem cardinal_mk_le_of_infinite [infinite R] : #{x : A // is_algebraic R x} ≤ #R := (cardinal_mk_le_max R A).trans $ by simp end non_lift end algebraic