/- Copyright (c) 2021 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov -/ import data.set.pointwise import order.conditionally_complete_lattice /-! # Upper/lower bounds in ordered monoids and groups In this file we prove a few facts like “`-s` is bounded above iff `s` is bounded below” (`bdd_above_neg`). -/ open function set open_locale pointwise section inv_neg variables {G : Type*} [group G] [preorder G] [covariant_class G G (*) (≤)] [covariant_class G G (swap (*)) (≤)] {s : set G} {a : G} @[simp, to_additive] lemma bdd_above_inv : bdd_above s⁻¹ ↔ bdd_below s := (order_iso.inv G).bdd_above_preimage @[simp, to_additive] lemma bdd_below_inv : bdd_below s⁻¹ ↔ bdd_above s := (order_iso.inv G).bdd_below_preimage @[to_additive] lemma bdd_above.inv (h : bdd_above s) : bdd_below s⁻¹ := bdd_below_inv.2 h @[to_additive] lemma bdd_below.inv (h : bdd_below s) : bdd_above s⁻¹ := bdd_above_inv.2 h @[simp, to_additive] lemma is_lub_inv : is_lub s⁻¹ a ↔ is_glb s a⁻¹ := (order_iso.inv G).is_lub_preimage @[to_additive] lemma is_lub_inv' : is_lub s⁻¹ a⁻¹ ↔ is_glb s a := (order_iso.inv G).is_lub_preimage' @[to_additive] lemma is_glb.inv (h : is_glb s a) : is_lub s⁻¹ a⁻¹ := is_lub_inv'.2 h @[simp, to_additive] lemma is_glb_inv : is_glb s⁻¹ a ↔ is_lub s a⁻¹ := (order_iso.inv G).is_glb_preimage @[to_additive] lemma is_glb_inv' : is_glb s⁻¹ a⁻¹ ↔ is_lub s a := (order_iso.inv G).is_glb_preimage' @[to_additive] lemma is_lub.inv (h : is_lub s a) : is_glb s⁻¹ a⁻¹ := is_glb_inv'.2 h end inv_neg section mul_add variables {M : Type*} [has_mul M] [preorder M] [covariant_class M M (*) (≤)] [covariant_class M M (swap (*)) (≤)] @[to_additive] lemma mul_mem_upper_bounds_mul {s t : set M} {a b : M} (ha : a ∈ upper_bounds s) (hb : b ∈ upper_bounds t) : a * b ∈ upper_bounds (s * t) := forall_image2_iff.2 $ λ x hx y hy, mul_le_mul' (ha hx) (hb hy) @[to_additive] lemma subset_upper_bounds_mul (s t : set M) : upper_bounds s * upper_bounds t ⊆ upper_bounds (s * t) := image2_subset_iff.2 $ λ x hx y hy, mul_mem_upper_bounds_mul hx hy @[to_additive] lemma mul_mem_lower_bounds_mul {s t : set M} {a b : M} (ha : a ∈ lower_bounds s) (hb : b ∈ lower_bounds t) : a * b ∈ lower_bounds (s * t) := @mul_mem_upper_bounds_mul Mᵒᵈ _ _ _ _ _ _ _ _ ha hb @[to_additive] lemma subset_lower_bounds_mul (s t : set M) : lower_bounds s * lower_bounds t ⊆ lower_bounds (s * t) := @subset_upper_bounds_mul Mᵒᵈ _ _ _ _ _ _ @[to_additive] lemma bdd_above.mul {s t : set M} (hs : bdd_above s) (ht : bdd_above t) : bdd_above (s * t) := (hs.mul ht).mono (subset_upper_bounds_mul s t) @[to_additive] lemma bdd_below.mul {s t : set M} (hs : bdd_below s) (ht : bdd_below t) : bdd_below (s * t) := (hs.mul ht).mono (subset_lower_bounds_mul s t) end mul_add section conditionally_complete_lattice section right variables {ι G : Type*} [group G] [conditionally_complete_lattice G] [covariant_class G G (function.swap (*)) (≤)] [nonempty ι] {f : ι → G} @[to_additive] lemma csupr_mul (hf : bdd_above (set.range f)) (a : G) : (⨆ i, f i) * a = ⨆ i, f i * a := (order_iso.mul_right a).map_csupr hf @[to_additive] lemma csupr_div (hf : bdd_above (set.range f)) (a : G) : (⨆ i, f i) / a = ⨆ i, f i / a := by simp only [div_eq_mul_inv, csupr_mul hf] end right section left variables {ι G : Type*} [group G] [conditionally_complete_lattice G] [covariant_class G G (*) (≤)] [nonempty ι] {f : ι → G} @[to_additive] lemma mul_csupr (hf : bdd_above (set.range f)) (a : G) : a * (⨆ i, f i) = ⨆ i, a * f i := (order_iso.mul_left a).map_csupr hf end left end conditionally_complete_lattice