/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import algebra.triv_sq_zero_ext /-! # Dual numbers The dual numbers over `R` are of the form `a + bε`, where `a` and `b` are typically elements of a commutative ring `R`, and `ε` is a symbol satisfying `ε^2 = 0`. They are a special case of `triv_sq_zero_ext R M` with `M = R`. ## Notation In the `dual_number` locale: * `R[ε]` is a shorthand for `dual_number R` * `ε` is a shorthand for `dual_number.eps` ## Main definitions * `dual_number` * `dual_number.eps` * `dual_number.lift` ## Implementation notes Rather than duplicating the API of `triv_sq_zero_ext`, this file reuses the functions there. ## References * https://en.wikipedia.org/wiki/Dual_number -/ variables {R : Type*} /-- The type of dual numbers, numbers of the form $a + bε$ where $ε^2 = 0$.-/ abbreviation dual_number (R : Type*) : Type* := triv_sq_zero_ext R R /-- The unit element $ε$ that squares to zero. -/ def dual_number.eps [has_zero R] [has_one R] : dual_number R := triv_sq_zero_ext.inr 1 localized "notation `ε` := dual_number.eps" in dual_number localized "postfix `[ε]`:1025 := dual_number" in dual_number open_locale dual_number namespace dual_number open triv_sq_zero_ext @[simp] lemma fst_eps [has_zero R] [has_one R] : fst ε = (0 : R) := fst_inr _ _ @[simp] lemma snd_eps [has_zero R] [has_one R] : snd ε = (1 : R) := snd_inr _ _ /-- A version of `triv_sq_zero_ext.snd_mul` with `*` instead of `•`. -/ @[simp] lemma snd_mul [semiring R] (x y : R[ε]) : snd (x * y) = fst x * snd y + fst y * snd x := snd_mul _ _ @[simp] lemma eps_mul_eps [semiring R] : (ε * ε : R[ε]) = 0 := inr_mul_inr _ _ _ @[simp] lemma inr_eq_smul_eps [mul_zero_one_class R] (r : R) : inr r = (r • ε : R[ε]) := ext (mul_zero r).symm (mul_one r).symm /-- For two algebra morphisms out of `R[ε]` to agree, it suffices for them to agree on `ε`. -/ @[ext] lemma alg_hom_ext {A} [comm_semiring R] [semiring A] [algebra R A] ⦃f g : R[ε] →ₐ[R] A⦄ (h : f ε = g ε) : f = g := alg_hom_ext' $ linear_map.ext_ring $ h variables {A : Type*} [comm_semiring R] [semiring A] [algebra R A] /-- A universal property of the dual numbers, providing a unique `R[ε] →ₐ[R] A` for every element of `A` which squares to `0`. This isomorphism is named to match the very similar `complex.lift`. -/ @[simps {attrs := []}] def lift : {e : A // e * e = 0} ≃ (R[ε] →ₐ[R] A) := equiv.trans (show {e : A // e * e = 0} ≃ {f : R →ₗ[R] A // ∀ x y, f x * f y = 0}, from (linear_map.ring_lmap_equiv_self R ℕ A).symm.to_equiv.subtype_equiv $ λ a, begin dsimp, simp_rw smul_mul_smul, refine ⟨λ h x y, h.symm ▸ smul_zero _, λ h, by simpa using h 1 1⟩, end) triv_sq_zero_ext.lift /- When applied to `ε`, `dual_number.lift` produces the element of `A` that squares to 0. -/ @[simp] lemma lift_apply_eps (e : {e : A // e * e = 0}) : lift e (ε : R[ε]) = e := (triv_sq_zero_ext.lift_aux_apply_inr _ _ _).trans $ one_smul _ _ /- Lifting `dual_number.eps` itself gives the identity. -/ @[simp] lemma lift_eps : lift ⟨ε, by exact eps_mul_eps⟩ = alg_hom.id R R[ε] := alg_hom_ext $ lift_apply_eps _ end dual_number