/- Copyright (c) 2018 Louis Carlin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Louis Carlin, Mario Carneiro -/ import data.int.basic import algebra.field.basic /-! # Euclidean domains This file introduces Euclidean domains and provides the extended Euclidean algorithm. To be precise, a slightly more general version is provided which is sometimes called a transfinite Euclidean domain and differs in the fact that the degree function need not take values in `ℕ` but can take values in any well-ordered set. Transfinite Euclidean domains were introduced by Motzkin and examples which don't satisfy the classical notion were provided independently by Hiblot and Nagata. ## Main definitions * `euclidean_domain`: Defines Euclidean domain with functions `quotient` and `remainder`. Instances of `has_div` and `has_mod` are provided, so that one can write `a = b * (a / b) + a % b`. * `gcd`: defines the greatest common divisors of two elements of a Euclidean domain. * `xgcd`: given two elements `a b : R`, `xgcd a b` defines the pair `(x, y)` such that `x * a + y * b = gcd a b`. * `lcm`: defines the lowest common multiple of two elements `a` and `b` of a Euclidean domain as `a * b / (gcd a b)` ## Main statements * `gcd_eq_gcd_ab`: states Bézout's lemma for Euclidean domains. * `int.euclidean_domain`: shows that `ℤ` is a Euclidean domain. * `field.to_euclidean_domain`: shows that any field is a Euclidean domain. ## Notation `≺` denotes the well founded relation on the Euclidean domain, e.g. in the example of the polynomial ring over a field, `p ≺ q` for polynomials `p` and `q` if and only if the degree of `p` is less than the degree of `q`. ## Implementation details Instead of working with a valuation, `euclidean_domain` is implemented with the existence of a well founded relation `r` on the integral domain `R`, which in the example of `ℤ` would correspond to setting `i ≺ j` for integers `i` and `j` if the absolute value of `i` is smaller than the absolute value of `j`. ## References * [Th. Motzkin, *The Euclidean algorithm*][MR32592] * [J.-J. Hiblot, *Des anneaux euclidiens dont le plus petit algorithme n'est pas à valeurs finies*] [MR399081] * [M. Nagata, *On Euclid algorithm*][MR541021] ## Tags Euclidean domain, transfinite Euclidean domain, Bézout's lemma -/ universe u /-- A `euclidean_domain` is an non-trivial commutative ring with a division and a remainder, satisfying `b * (a / b) + a % b = a`. The definition of a euclidean domain usually includes a valuation function `R → ℕ`. This definition is slightly generalised to include a well founded relation `r` with the property that `r (a % b) b`, instead of a valuation. -/ @[protect_proj without mul_left_not_lt r_well_founded] class euclidean_domain (R : Type u) extends comm_ring R, nontrivial R := (quotient : R → R → R) (quotient_zero : ∀ a, quotient a 0 = 0) (remainder : R → R → R) (quotient_mul_add_remainder_eq : ∀ a b, b * quotient a b + remainder a b = a) (r : R → R → Prop) (r_well_founded : well_founded r) (remainder_lt : ∀ a {b}, b ≠ 0 → r (remainder a b) b) (mul_left_not_lt : ∀ a {b}, b ≠ 0 → ¬r (a * b) a) namespace euclidean_domain variable {R : Type u} variables [euclidean_domain R] local infix ` ≺ `:50 := euclidean_domain.r @[priority 70] -- see Note [lower instance priority] instance : has_div R := ⟨euclidean_domain.quotient⟩ @[priority 70] -- see Note [lower instance priority] instance : has_mod R := ⟨euclidean_domain.remainder⟩ theorem div_add_mod (a b : R) : b * (a / b) + a % b = a := euclidean_domain.quotient_mul_add_remainder_eq _ _ lemma mod_add_div (a b : R) : a % b + b * (a / b) = a := (add_comm _ _).trans (div_add_mod _ _) lemma mod_add_div' (m k : R) : m % k + (m / k) * k = m := by { rw mul_comm, exact mod_add_div _ _ } lemma div_add_mod' (m k : R) : (m / k) * k + m % k = m := by { rw mul_comm, exact div_add_mod _ _ } lemma mod_eq_sub_mul_div {R : Type*} [euclidean_domain R] (a b : R) : a % b = a - b * (a / b) := calc a % b = b * (a / b) + a % b - b * (a / b) : (add_sub_cancel' _ _).symm ... = a - b * (a / b) : by rw div_add_mod theorem mod_lt : ∀ a {b : R}, b ≠ 0 → (a % b) ≺ b := euclidean_domain.remainder_lt theorem mul_right_not_lt {a : R} (b) (h : a ≠ 0) : ¬(a * b) ≺ b := by { rw mul_comm, exact mul_left_not_lt b h } lemma mul_div_cancel_left {a : R} (b) (a0 : a ≠ 0) : a * b / a = b := eq.symm $ eq_of_sub_eq_zero $ classical.by_contradiction $ λ h, begin have := mul_left_not_lt a h, rw [mul_sub, sub_eq_iff_eq_add'.2 (div_add_mod (a*b) a).symm] at this, exact this (mod_lt _ a0) end lemma mul_div_cancel (a) {b : R} (b0 : b ≠ 0) : a * b / b = a := by { rw mul_comm, exact mul_div_cancel_left a b0 } @[simp] lemma mod_zero (a : R) : a % 0 = a := by simpa only [zero_mul, zero_add] using div_add_mod a 0 @[simp] lemma mod_eq_zero {a b : R} : a % b = 0 ↔ b ∣ a := ⟨λ h, by { rw [← div_add_mod a b, h, add_zero], exact dvd_mul_right _ _ }, λ ⟨c, e⟩, begin rw [e, ← add_left_cancel_iff, div_add_mod, add_zero], haveI := classical.dec, by_cases b0 : b = 0, { simp only [b0, zero_mul] }, { rw [mul_div_cancel_left _ b0] } end⟩ @[simp] lemma mod_self (a : R) : a % a = 0 := mod_eq_zero.2 dvd_rfl lemma dvd_mod_iff {a b c : R} (h : c ∣ b) : c ∣ a % b ↔ c ∣ a := by rw [dvd_add_iff_right (h.mul_right _), div_add_mod] lemma lt_one (a : R) : a ≺ (1:R) → a = 0 := by { haveI := classical.dec, exact not_imp_not.1 (λ h, by simpa only [one_mul] using mul_left_not_lt 1 h) } lemma val_dvd_le : ∀ a b : R, b ∣ a → a ≠ 0 → ¬a ≺ b | _ b ⟨d, rfl⟩ ha := mul_left_not_lt b (mt (by { rintro rfl, exact mul_zero _ }) ha) @[simp] lemma mod_one (a : R) : a % 1 = 0 := mod_eq_zero.2 (one_dvd _) @[simp] lemma zero_mod (b : R) : 0 % b = 0 := mod_eq_zero.2 (dvd_zero _) @[simp, priority 900] lemma div_zero (a : R) : a / 0 = 0 := euclidean_domain.quotient_zero a @[simp, priority 900] lemma zero_div {a : R} : 0 / a = 0 := classical.by_cases (λ a0 : a = 0, a0.symm ▸ div_zero 0) (λ a0, by simpa only [zero_mul] using mul_div_cancel 0 a0) @[simp, priority 900] lemma div_self {a : R} (a0 : a ≠ 0) : a / a = 1 := by simpa only [one_mul] using mul_div_cancel 1 a0 lemma eq_div_of_mul_eq_left {a b c : R} (hb : b ≠ 0) (h : a * b = c) : a = c / b := by rw [← h, mul_div_cancel _ hb] lemma eq_div_of_mul_eq_right {a b c : R} (ha : a ≠ 0) (h : a * b = c) : b = c / a := by rw [← h, mul_div_cancel_left _ ha] theorem mul_div_assoc (x : R) {y z : R} (h : z ∣ y) : x * y / z = x * (y / z) := begin classical, by_cases hz : z = 0, { subst hz, rw [div_zero, div_zero, mul_zero] }, rcases h with ⟨p, rfl⟩, rw [mul_div_cancel_left _ hz, mul_left_comm, mul_div_cancel_left _ hz] end @[simp, priority 900] -- This generalizes `int.div_one`, see note [simp-normal form] lemma div_one (p : R) : p / 1 = p := (euclidean_domain.eq_div_of_mul_eq_left (@one_ne_zero R _ _) (mul_one p)).symm lemma div_dvd_of_dvd {p q : R} (hpq : q ∣ p) : p / q ∣ p := begin by_cases hq : q = 0, { rw [hq, zero_dvd_iff] at hpq, rw hpq, exact dvd_zero _ }, use q, rw [mul_comm, ← euclidean_domain.mul_div_assoc _ hpq, mul_comm, euclidean_domain.mul_div_cancel _ hq] end lemma dvd_div_of_mul_dvd {a b c : R} (h : a * b ∣ c) : b ∣ c / a := begin rcases eq_or_ne a 0 with rfl | ha, { simp only [div_zero, dvd_zero] }, rcases h with ⟨d, rfl⟩, refine ⟨d, _⟩, rw [mul_assoc, mul_div_cancel_left _ ha] end section open_locale classical @[elab_as_eliminator] theorem gcd.induction {P : R → R → Prop} : ∀ a b : R, (∀ x, P 0 x) → (∀ a b, a ≠ 0 → P (b % a) a → P a b) → P a b | a := λ b H0 H1, if a0 : a = 0 then a0.symm ▸ H0 _ else have h:_ := mod_lt b a0, H1 _ _ a0 (gcd.induction (b%a) a H0 H1) using_well_founded {dec_tac := tactic.assumption, rel_tac := λ _ _, `[exact ⟨_, r_well_founded⟩]} end section gcd variable [decidable_eq R] /-- `gcd a b` is a (non-unique) element such that `gcd a b ∣ a` `gcd a b ∣ b`, and for any element `c` such that `c ∣ a` and `c ∣ b`, then `c ∣ gcd a b` -/ def gcd : R → R → R | a := λ b, if a0 : a = 0 then b else have h:_ := mod_lt b a0, gcd (b%a) a using_well_founded {dec_tac := tactic.assumption, rel_tac := λ _ _, `[exact ⟨_, r_well_founded⟩]} @[simp] theorem gcd_zero_left (a : R) : gcd 0 a = a := by { rw gcd, exact if_pos rfl } @[simp] theorem gcd_zero_right (a : R) : gcd a 0 = a := by { rw gcd, split_ifs; simp only [h, zero_mod, gcd_zero_left] } theorem gcd_val (a b : R) : gcd a b = gcd (b % a) a := by { rw gcd, split_ifs; [simp only [h, mod_zero, gcd_zero_right], refl]} theorem gcd_dvd (a b : R) : gcd a b ∣ a ∧ gcd a b ∣ b := gcd.induction a b (λ b, by { rw gcd_zero_left, exact ⟨dvd_zero _, dvd_rfl⟩ }) (λ a b aneq ⟨IH₁, IH₂⟩, by { rw gcd_val, exact ⟨IH₂, (dvd_mod_iff IH₂).1 IH₁⟩ }) theorem gcd_dvd_left (a b : R) : gcd a b ∣ a := (gcd_dvd a b).left theorem gcd_dvd_right (a b : R) : gcd a b ∣ b := (gcd_dvd a b).right protected theorem gcd_eq_zero_iff {a b : R} : gcd a b = 0 ↔ a = 0 ∧ b = 0 := ⟨λ h, by simpa [h] using gcd_dvd a b, by { rintro ⟨rfl, rfl⟩, exact gcd_zero_right _ }⟩ theorem dvd_gcd {a b c : R} : c ∣ a → c ∣ b → c ∣ gcd a b := gcd.induction a b (λ _ _ H, by simpa only [gcd_zero_left] using H) (λ a b a0 IH ca cb, by { rw gcd_val, exact IH ((dvd_mod_iff ca).2 cb) ca }) theorem gcd_eq_left {a b : R} : gcd a b = a ↔ a ∣ b := ⟨λ h, by {rw ← h, apply gcd_dvd_right }, λ h, by rw [gcd_val, mod_eq_zero.2 h, gcd_zero_left]⟩ @[simp] theorem gcd_one_left (a : R) : gcd 1 a = 1 := gcd_eq_left.2 (one_dvd _) @[simp] theorem gcd_self (a : R) : gcd a a = a := gcd_eq_left.2 dvd_rfl /-- An implementation of the extended GCD algorithm. At each step we are computing a triple `(r, s, t)`, where `r` is the next value of the GCD algorithm, to compute the greatest common divisor of the input (say `x` and `y`), and `s` and `t` are the coefficients in front of `x` and `y` to obtain `r` (i.e. `r = s * x + t * y`). The function `xgcd_aux` takes in two triples, and from these recursively computes the next triple: ``` xgcd_aux (r, s, t) (r', s', t') = xgcd_aux (r' % r, s' - (r' / r) * s, t' - (r' / r) * t) (r, s, t) ``` -/ def xgcd_aux : R → R → R → R → R → R → R × R × R | r := λ s t r' s' t', if hr : r = 0 then (r', s', t') else have r' % r ≺ r, from mod_lt _ hr, let q := r' / r in xgcd_aux (r' % r) (s' - q * s) (t' - q * t) r s t using_well_founded {dec_tac := tactic.assumption, rel_tac := λ _ _, `[exact ⟨_, r_well_founded⟩]} @[simp] theorem xgcd_zero_left {s t r' s' t' : R} : xgcd_aux 0 s t r' s' t' = (r', s', t') := by { unfold xgcd_aux, exact if_pos rfl } theorem xgcd_aux_rec {r s t r' s' t' : R} (h : r ≠ 0) : xgcd_aux r s t r' s' t' = xgcd_aux (r' % r) (s' - (r' / r) * s) (t' - (r' / r) * t) r s t := by { conv {to_lhs, rw [xgcd_aux]}, exact if_neg h} /-- Use the extended GCD algorithm to generate the `a` and `b` values satisfying `gcd x y = x * a + y * b`. -/ def xgcd (x y : R) : R × R := (xgcd_aux x 1 0 y 0 1).2 /-- The extended GCD `a` value in the equation `gcd x y = x * a + y * b`. -/ def gcd_a (x y : R) : R := (xgcd x y).1 /-- The extended GCD `b` value in the equation `gcd x y = x * a + y * b`. -/ def gcd_b (x y : R) : R := (xgcd x y).2 @[simp] theorem gcd_a_zero_left {s : R} : gcd_a 0 s = 0 := by { unfold gcd_a, rw [xgcd, xgcd_zero_left] } @[simp] theorem gcd_b_zero_left {s : R} : gcd_b 0 s = 1 := by { unfold gcd_b, rw [xgcd, xgcd_zero_left] } @[simp] theorem xgcd_aux_fst (x y : R) : ∀ s t s' t', (xgcd_aux x s t y s' t').1 = gcd x y := gcd.induction x y (by { intros, rw [xgcd_zero_left, gcd_zero_left] }) (λ x y h IH s t s' t', by { simp only [xgcd_aux_rec h, if_neg h, IH], rw ← gcd_val }) theorem xgcd_aux_val (x y : R) : xgcd_aux x 1 0 y 0 1 = (gcd x y, xgcd x y) := by rw [xgcd, ← xgcd_aux_fst x y 1 0 0 1, prod.mk.eta] theorem xgcd_val (x y : R) : xgcd x y = (gcd_a x y, gcd_b x y) := prod.mk.eta.symm private def P (a b : R) : R × R × R → Prop | (r, s, t) := (r : R) = a * s + b * t theorem xgcd_aux_P (a b : R) {r r' : R} : ∀ {s t s' t'}, P a b (r, s, t) → P a b (r', s', t') → P a b (xgcd_aux r s t r' s' t') := gcd.induction r r' (by { intros, simpa only [xgcd_zero_left] }) $ λ x y h IH s t s' t' p p', begin rw [xgcd_aux_rec h], refine IH _ p, unfold P at p p' ⊢, rw [mul_sub, mul_sub, add_sub, sub_add_eq_add_sub, ← p', sub_sub, mul_comm _ s, ← mul_assoc, mul_comm _ t, ← mul_assoc, ← add_mul, ← p, mod_eq_sub_mul_div] end /-- An explicit version of **Bézout's lemma** for Euclidean domains. -/ theorem gcd_eq_gcd_ab (a b : R) : (gcd a b : R) = a * gcd_a a b + b * gcd_b a b := by { have := @xgcd_aux_P _ _ _ a b a b 1 0 0 1 (by rw [P, mul_one, mul_zero, add_zero]) (by rw [P, mul_one, mul_zero, zero_add]), rwa [xgcd_aux_val, xgcd_val] at this } @[priority 70] -- see Note [lower instance priority] instance (R : Type*) [e : euclidean_domain R] : is_domain R := by { haveI := classical.dec_eq R, exact { eq_zero_or_eq_zero_of_mul_eq_zero := λ a b h, (or_iff_not_and_not.2 $ λ h0, h0.1 $ by rw [← mul_div_cancel a h0.2, h, zero_div]), ..e }} end gcd section lcm variables [decidable_eq R] /-- `lcm a b` is a (non-unique) element such that `a ∣ lcm a b` `b ∣ lcm a b`, and for any element `c` such that `a ∣ c` and `b ∣ c`, then `lcm a b ∣ c` -/ def lcm (x y : R) : R := x * y / gcd x y theorem dvd_lcm_left (x y : R) : x ∣ lcm x y := classical.by_cases (assume hxy : gcd x y = 0, by { rw [lcm, hxy, div_zero], exact dvd_zero _ }) (λ hxy, let ⟨z, hz⟩ := (gcd_dvd x y).2 in ⟨z, eq.symm $ eq_div_of_mul_eq_left hxy $ by rw [mul_right_comm, mul_assoc, ← hz]⟩) theorem dvd_lcm_right (x y : R) : y ∣ lcm x y := classical.by_cases (assume hxy : gcd x y = 0, by { rw [lcm, hxy, div_zero], exact dvd_zero _ }) (λ hxy, let ⟨z, hz⟩ := (gcd_dvd x y).1 in ⟨z, eq.symm $ eq_div_of_mul_eq_right hxy $ by rw [← mul_assoc, mul_right_comm, ← hz]⟩) theorem lcm_dvd {x y z : R} (hxz : x ∣ z) (hyz : y ∣ z) : lcm x y ∣ z := begin rw lcm, by_cases hxy : gcd x y = 0, { rw [hxy, div_zero], rw euclidean_domain.gcd_eq_zero_iff at hxy, rwa hxy.1 at hxz }, rcases gcd_dvd x y with ⟨⟨r, hr⟩, ⟨s, hs⟩⟩, suffices : x * y ∣ z * gcd x y, { cases this with p hp, use p, generalize_hyp : gcd x y = g at hxy hs hp ⊢, subst hs, rw [mul_left_comm, mul_div_cancel_left _ hxy, ← mul_left_inj' hxy, hp], rw [← mul_assoc], simp only [mul_right_comm] }, rw [gcd_eq_gcd_ab, mul_add], apply dvd_add, { rw mul_left_comm, exact mul_dvd_mul_left _ (hyz.mul_right _) }, { rw [mul_left_comm, mul_comm], exact mul_dvd_mul_left _ (hxz.mul_right _) } end @[simp] lemma lcm_dvd_iff {x y z : R} : lcm x y ∣ z ↔ x ∣ z ∧ y ∣ z := ⟨λ hz, ⟨(dvd_lcm_left _ _).trans hz, (dvd_lcm_right _ _).trans hz⟩, λ ⟨hxz, hyz⟩, lcm_dvd hxz hyz⟩ @[simp] lemma lcm_zero_left (x : R) : lcm 0 x = 0 := by rw [lcm, zero_mul, zero_div] @[simp] lemma lcm_zero_right (x : R) : lcm x 0 = 0 := by rw [lcm, mul_zero, zero_div] @[simp] lemma lcm_eq_zero_iff {x y : R} : lcm x y = 0 ↔ x = 0 ∨ y = 0 := begin split, { intro hxy, rw [lcm, mul_div_assoc _ (gcd_dvd_right _ _), mul_eq_zero] at hxy, apply or_of_or_of_imp_right hxy, intro hy, by_cases hgxy : gcd x y = 0, { rw euclidean_domain.gcd_eq_zero_iff at hgxy, exact hgxy.2 }, { rcases gcd_dvd x y with ⟨⟨r, hr⟩, ⟨s, hs⟩⟩, generalize_hyp : gcd x y = g at hr hs hy hgxy ⊢, subst hs, rw [mul_div_cancel_left _ hgxy] at hy, rw [hy, mul_zero] } }, rintro (hx | hy), { rw [hx, lcm_zero_left] }, { rw [hy, lcm_zero_right] } end @[simp] lemma gcd_mul_lcm (x y : R) : gcd x y * lcm x y = x * y := begin rw lcm, by_cases h : gcd x y = 0, { rw [h, zero_mul], rw euclidean_domain.gcd_eq_zero_iff at h, rw [h.1, zero_mul] }, rcases gcd_dvd x y with ⟨⟨r, hr⟩, ⟨s, hs⟩⟩, generalize_hyp : gcd x y = g at h hr ⊢, subst hr, rw [mul_assoc, mul_div_cancel_left _ h] end end lcm section div lemma mul_div_mul_cancel {a b c : R} (ha : a ≠ 0) (hcb : c ∣ b) : a * b / (a * c) = b / c := begin by_cases hc : c = 0, { simp [hc] }, refine eq_div_of_mul_eq_right hc (mul_left_cancel₀ ha _), rw [← mul_assoc, ← mul_div_assoc _ (mul_dvd_mul_left a hcb), mul_div_cancel_left _ (mul_ne_zero ha hc)] end lemma mul_div_mul_comm_of_dvd_dvd {a b c d : R} (hac : c ∣ a) (hbd : d ∣ b) : a * b / (c * d) = a / c * (b / d) := begin rcases eq_or_ne c 0 with rfl | hc0, { simp }, rcases eq_or_ne d 0 with rfl | hd0, { simp }, obtain ⟨k1, rfl⟩ := hac, obtain ⟨k2, rfl⟩ := hbd, rw [mul_div_cancel_left _ hc0, mul_div_cancel_left _ hd0, mul_mul_mul_comm, mul_div_cancel_left _ (mul_ne_zero hc0 hd0)], end end div end euclidean_domain instance int.euclidean_domain : euclidean_domain ℤ := { add := (+), mul := (*), one := 1, zero := 0, neg := has_neg.neg, quotient := (/), quotient_zero := int.div_zero, remainder := (%), quotient_mul_add_remainder_eq := λ a b, int.div_add_mod _ _, r := λ a b, a.nat_abs < b.nat_abs, r_well_founded := measure_wf (λ a, int.nat_abs a), remainder_lt := λ a b b0, int.coe_nat_lt.1 $ by { rw [int.nat_abs_of_nonneg (int.mod_nonneg _ b0), ← int.abs_eq_nat_abs], exact int.mod_lt _ b0 }, mul_left_not_lt := λ a b b0, not_lt_of_ge $ by {rw [← mul_one a.nat_abs, int.nat_abs_mul], exact mul_le_mul_of_nonneg_left (int.nat_abs_pos_of_ne_zero b0) (nat.zero_le _) }, .. int.comm_ring, .. int.nontrivial } @[priority 100] -- see Note [lower instance priority] instance field.to_euclidean_domain {K : Type u} [field K] : euclidean_domain K := { add := (+), mul := (*), one := 1, zero := 0, neg := has_neg.neg, quotient := (/), remainder := λ a b, a - a * b / b, quotient_zero := div_zero, quotient_mul_add_remainder_eq := λ a b, by { classical, by_cases b = 0; simp [h, mul_div_cancel'] }, r := λ a b, a = 0 ∧ b ≠ 0, r_well_founded := well_founded.intro $ λ a, acc.intro _ $ λ b ⟨hb, hna⟩, acc.intro _ $ λ c ⟨hc, hnb⟩, false.elim $ hnb hb, remainder_lt := λ a b hnb, by simp [hnb], mul_left_not_lt := λ a b hnb ⟨hab, hna⟩, or.cases_on (mul_eq_zero.1 hab) hna hnb, .. ‹field K› }