/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis -/ import algebra.group_with_zero.power import algebra.ring.equiv import tactic.linarith /-! # Integer power operation on fields and division rings This file collects basic facts about the operation of raising an element of a `division_ring` to an integer power. More specialised results are provided in the case of a linearly ordered field. -/ open function int variables {α β : Type*} section division_ring variables [division_ring α] [division_ring β] @[simp] lemma ring_hom.map_zpow (f : α →+* β) : ∀ (a : α) (n : ℤ), f (a ^ n) = f a ^ n := f.to_monoid_with_zero_hom.map_zpow @[simp] lemma ring_equiv.map_zpow (f : α ≃+* β) : ∀ (a : α) (n : ℤ), f (a ^ n) = f a ^ n := f.to_ring_hom.map_zpow @[simp] lemma zpow_bit1_neg (x : α) (n : ℤ) : (-x) ^ bit1 n = - x ^ bit1 n := by rw [zpow_bit1', zpow_bit1', neg_mul_neg, neg_mul_eq_mul_neg] @[simp, norm_cast] lemma rat.cast_zpow [char_zero α] (q : ℚ) (n : ℤ) : ((q ^ n : ℚ) : α) = q ^ n := (rat.cast_hom α).map_zpow q n end division_ring section linear_ordered_semifield variables [linear_ordered_semifield α] {a b x : α} {m n : ℤ} lemma zpow_nonneg (ha : 0 ≤ a) : ∀ (z : ℤ), 0 ≤ a ^ z | (n : ℕ) := by { rw zpow_coe_nat, exact pow_nonneg ha _ } | -[1+n] := by { rw zpow_neg_succ_of_nat, exact inv_nonneg.2 (pow_nonneg ha _) } lemma zpow_pos_of_pos (ha : 0 < a) : ∀ (z : ℤ), 0 < a ^ z | (n : ℕ) := by { rw zpow_coe_nat, exact pow_pos ha _ } | -[1+n] := by { rw zpow_neg_succ_of_nat, exact inv_pos.2 (pow_pos ha _) } lemma zpow_le_of_le (ha : 1 ≤ a) (h : m ≤ n) : a ^ m ≤ a ^ n := begin have ha₀ : 0 < a, from one_pos.trans_le ha, lift n - m to ℕ using sub_nonneg.2 h with k hk, calc a ^ m = a ^ m * 1 : (mul_one _).symm ... ≤ a ^ m * a ^ k : mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _) ... = a ^ n : by rw [← zpow_coe_nat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right] end lemma pow_le_max_of_min_le (hx : 1 ≤ x) {a b c : ℤ} (h : min a b ≤ c) : x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) := begin wlog hle : a ≤ b, have hnle : -b ≤ -a, from neg_le_neg hle, have hfle : x ^ (-b) ≤ x ^ (-a), from zpow_le_of_le hx hnle, have : x ^ (-c) ≤ x ^ (-a), { apply zpow_le_of_le hx, simpa only [min_eq_left hle, neg_le_neg_iff] using h }, simpa only [max_eq_left hfle] end lemma zpow_le_one_of_nonpos (ha : 1 ≤ a) (hn : n ≤ 0) : a ^ n ≤ 1 := (zpow_le_of_le ha hn).trans_eq $ zpow_zero _ lemma one_le_zpow_of_nonneg (ha : 1 ≤ a) (hn : 0 ≤ n) : 1 ≤ a ^ n := (zpow_zero _).symm.trans_le $ zpow_le_of_le ha hn protected lemma nat.zpow_pos_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : 0 < (a : α)^n := by { apply zpow_pos_of_pos, exact_mod_cast h } lemma nat.zpow_ne_zero_of_pos {a : ℕ} (h : 0 < a) (n : ℤ) : (a : α)^n ≠ 0 := (nat.zpow_pos_of_pos h n).ne' lemma one_lt_zpow (ha : 1 < a) : ∀ n : ℤ, 0 < n → 1 < a ^ n | (n : ℕ) h := (zpow_coe_nat _ _).symm.subst (one_lt_pow ha $ int.coe_nat_ne_zero.mp h.ne') | -[1+ n] h := ((int.neg_succ_not_pos _).mp h).elim lemma zpow_strict_mono (hx : 1 < x) : strict_mono ((^) x : ℤ → α) := strict_mono_int_of_lt_succ $ λ n, have xpos : 0 < x, from zero_lt_one.trans hx, calc x ^ n < x ^ n * x : lt_mul_of_one_lt_right (zpow_pos_of_pos xpos _) hx ... = x ^ (n + 1) : (zpow_add_one₀ xpos.ne' _).symm lemma zpow_strict_anti (h₀ : 0 < x) (h₁ : x < 1) : strict_anti ((^) x : ℤ → α) := strict_anti_int_of_succ_lt $ λ n, calc x ^ (n + 1) = x ^ n * x : zpow_add_one₀ h₀.ne' _ ... < x ^ n * 1 : (mul_lt_mul_left $ zpow_pos_of_pos h₀ _).2 h₁ ... = x ^ n : mul_one _ @[simp] lemma zpow_lt_iff_lt (hx : 1 < x) : x ^ m < x ^ n ↔ m < n := (zpow_strict_mono hx).lt_iff_lt @[simp] lemma zpow_le_iff_le (hx : 1 < x) : x ^ m ≤ x ^ n ↔ m ≤ n := (zpow_strict_mono hx).le_iff_le lemma min_le_of_zpow_le_max (hx : 1 < x) {a b c : ℤ} (h_max : x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b))) : min a b ≤ c := begin rw min_le_iff, refine or.imp (λ h, _) (λ h, _) (le_max_iff.mp h_max); rwa [zpow_le_iff_le hx, neg_le_neg_iff] at h end @[simp] lemma pos_div_pow_pos (ha : 0 < a) (hb : 0 < b) (k : ℕ) : 0 < a/b^k := div_pos ha (pow_pos hb k) @[simp] lemma div_pow_le (ha : 0 < a) (hb : 1 ≤ b) (k : ℕ) : a/b^k ≤ a := (div_le_iff $ pow_pos (lt_of_lt_of_le zero_lt_one hb) k).mpr (calc a = a * 1 : (mul_one a).symm ... ≤ a*b^k : (mul_le_mul_left ha).mpr $ one_le_pow_of_one_le hb _) lemma zpow_injective (h₀ : 0 < x) (h₁ : x ≠ 1) : injective ((^) x : ℤ → α) := begin intros m n h, rcases h₁.lt_or_lt with H|H, { apply (zpow_strict_mono (one_lt_inv h₀ H)).injective, show x⁻¹ ^ m = x⁻¹ ^ n, rw [← zpow_neg_one, ← zpow_mul, ← zpow_mul, mul_comm _ m, mul_comm _ n, zpow_mul, zpow_mul, h], }, { exact (zpow_strict_mono H).injective h, }, end @[simp] lemma zpow_inj (h₀ : 0 < x) (h₁ : x ≠ 1) : x ^ m = x ^ n ↔ m = n := (zpow_injective h₀ h₁).eq_iff end linear_ordered_semifield section linear_ordered_field variables [linear_ordered_field α] {a x : α} {m n : ℤ} lemma zpow_bit0_nonneg (a : α) (n : ℤ) : 0 ≤ a ^ bit0 n := (mul_self_nonneg _).trans_eq $ (zpow_bit0 _ _).symm lemma zpow_two_nonneg (a : α) : 0 ≤ a ^ (2 : ℤ) := zpow_bit0_nonneg _ _ lemma zpow_bit0_pos (h : a ≠ 0) (n : ℤ) : 0 < a ^ bit0 n := (zpow_bit0_nonneg a n).lt_of_ne (zpow_ne_zero _ h).symm lemma zpow_two_pos_of_ne_zero (h : a ≠ 0) : 0 < a ^ (2 : ℤ) := zpow_bit0_pos h _ @[simp] theorem zpow_bit1_neg_iff : a ^ bit1 n < 0 ↔ a < 0 := ⟨λ h, not_le.1 $ λ h', not_le.2 h $ zpow_nonneg h' _, λ h, by rw [bit1, zpow_add_one₀ h.ne]; exact mul_neg_of_pos_of_neg (zpow_bit0_pos h.ne _) h⟩ @[simp] theorem zpow_bit1_nonneg_iff : 0 ≤ a ^ bit1 n ↔ 0 ≤ a := le_iff_le_iff_lt_iff_lt.2 zpow_bit1_neg_iff @[simp] theorem zpow_bit1_nonpos_iff : a ^ bit1 n ≤ 0 ↔ a ≤ 0 := by rw [le_iff_lt_or_eq, le_iff_lt_or_eq, zpow_bit1_neg_iff, zpow_eq_zero_iff (bit1_ne_zero n)] @[simp] theorem zpow_bit1_pos_iff : 0 < a ^ bit1 n ↔ 0 < a := lt_iff_lt_of_le_iff_le zpow_bit1_nonpos_iff end linear_ordered_field