/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import algebra.group.inj_surj import data.list.big_operators import data.list.range import group_theory.group_action.defs import group_theory.submonoid.basic import data.set_like.basic import data.sigma.basic /-! # Additively-graded multiplicative structures This module provides a set of heterogeneous typeclasses for defining a multiplicative structure over the sigma type `graded_monoid A` such that `(*) : A i → A j → A (i + j)`; that is to say, `A` forms an additively-graded monoid. The typeclasses are: * `graded_monoid.ghas_one A` * `graded_monoid.ghas_mul A` * `graded_monoid.gmonoid A` * `graded_monoid.gcomm_monoid A` With the `sigma_graded` locale open, these respectively imbue: * `has_one (graded_monoid A)` * `has_mul (graded_monoid A)` * `monoid (graded_monoid A)` * `comm_monoid (graded_monoid A)` the base type `A 0` with: * `graded_monoid.grade_zero.has_one` * `graded_monoid.grade_zero.has_mul` * `graded_monoid.grade_zero.monoid` * `graded_monoid.grade_zero.comm_monoid` and the `i`th grade `A i` with `A 0`-actions (`•`) defined as left-multiplication: * (nothing) * `graded_monoid.grade_zero.has_smul (A 0)` * `graded_monoid.grade_zero.mul_action (A 0)` * (nothing) For now, these typeclasses are primarily used in the construction of `direct_sum.ring` and the rest of that file. ## Dependent graded products This also introduces `list.dprod`, which takes the (possibly non-commutative) product of a list of graded elements of type `A i`. This definition primarily exist to allow `graded_monoid.mk` and `direct_sum.of` to be pulled outside a product, such as in `graded_monoid.mk_list_dprod` and `direct_sum.of_list_dprod`. ## Internally graded monoids In addition to the above typeclasses, in the most frequent case when `A` is an indexed collection of `set_like` subobjects (such as `add_submonoid`s, `add_subgroup`s, or `submodule`s), this file provides the `Prop` typeclasses: * `set_like.has_graded_one A` (which provides the obvious `graded_monoid.ghas_one A` instance) * `set_like.has_graded_mul A` (which provides the obvious `graded_monoid.ghas_mul A` instance) * `set_like.graded_monoid A` (which provides the obvious `graded_monoid.gmonoid A` and `graded_monoid.gcomm_monoid A` instances) which respectively provide the API lemmas * `set_like.one_mem_graded` * `set_like.mul_mem_graded` * `set_like.pow_mem_graded`, `set_like.list_prod_map_mem_graded` Strictly this last class is unecessary as it has no fields not present in its parents, but it is included for convenience. Note that there is no need for `set_like.graded_ring` or similar, as all the information it would contain is already supplied by `graded_monoid` when `A` is a collection of objects satisfying `add_submonoid_class` such as `submodule`s. These constructions are explored in `algebra.direct_sum.internal`. This file also defines: * `set_like.is_homogeneous A` (which says that `a` is homogeneous iff `a ∈ A i` for some `i : ι`) * `set_like.homogeneous_submonoid A`, which is, as the name suggests, the submonoid consisting of all the homogeneous elements. ## tags graded monoid -/ set_option old_structure_cmd true variables {ι : Type*} /-- A type alias of sigma types for graded monoids. -/ def graded_monoid (A : ι → Type*) := sigma A namespace graded_monoid instance {A : ι → Type*} [inhabited ι] [inhabited (A default)]: inhabited (graded_monoid A) := sigma.inhabited /-- Construct an element of a graded monoid. -/ def mk {A : ι → Type*} : Π i, A i → graded_monoid A := sigma.mk /-! ### Typeclasses -/ section defs variables (A : ι → Type*) /-- A graded version of `has_one`, which must be of grade 0. -/ class ghas_one [has_zero ι] := (one : A 0) /-- `ghas_one` implies `has_one (graded_monoid A)` -/ instance ghas_one.to_has_one [has_zero ι] [ghas_one A] : has_one (graded_monoid A) := ⟨⟨_, ghas_one.one⟩⟩ /-- A graded version of `has_mul`. Multiplication combines grades additively, like `add_monoid_algebra`. -/ class ghas_mul [has_add ι] := (mul {i j} : A i → A j → A (i + j)) /-- `ghas_mul` implies `has_mul (graded_monoid A)`. -/ instance ghas_mul.to_has_mul [has_add ι] [ghas_mul A] : has_mul (graded_monoid A) := ⟨λ (x y : graded_monoid A), ⟨_, ghas_mul.mul x.snd y.snd⟩⟩ lemma mk_mul_mk [has_add ι] [ghas_mul A] {i j} (a : A i) (b : A j) : mk i a * mk j b = mk (i + j) (ghas_mul.mul a b) := rfl namespace gmonoid variables {A} [add_monoid ι] [ghas_mul A] [ghas_one A] /-- A default implementation of power on a graded monoid, like `npow_rec`. `gmonoid.gnpow` should be used instead. -/ def gnpow_rec : Π (n : ℕ) {i}, A i → A (n • i) | 0 i a := cast (congr_arg A (zero_nsmul i).symm) ghas_one.one | (n + 1) i a := cast (congr_arg A (succ_nsmul i n).symm) (ghas_mul.mul a $ gnpow_rec _ a) @[simp] lemma gnpow_rec_zero (a : graded_monoid A) : graded_monoid.mk _ (gnpow_rec 0 a.snd) = 1 := sigma.ext (zero_nsmul _) (heq_of_cast_eq _ rfl).symm /-- Tactic used to autofill `graded_monoid.gmonoid.gnpow_zero'` when the default `graded_monoid.gmonoid.gnpow_rec` is used. -/ meta def apply_gnpow_rec_zero_tac : tactic unit := `[apply graded_monoid.gmonoid.gnpow_rec_zero] @[simp] lemma gnpow_rec_succ (n : ℕ) (a : graded_monoid A) : (graded_monoid.mk _ $ gnpow_rec n.succ a.snd) = a * ⟨_, gnpow_rec n a.snd⟩ := sigma.ext (succ_nsmul _ _) (heq_of_cast_eq _ rfl).symm /-- Tactic used to autofill `graded_monoid.gmonoid.gnpow_succ'` when the default `graded_monoid.gmonoid.gnpow_rec` is used. -/ meta def apply_gnpow_rec_succ_tac : tactic unit := `[apply graded_monoid.gmonoid.gnpow_rec_succ] end gmonoid /-- A graded version of `monoid`. Like `monoid.npow`, this has an optional `gmonoid.gnpow` field to allow definitional control of natural powers of a graded monoid. -/ class gmonoid [add_monoid ι] extends ghas_mul A, ghas_one A := (one_mul (a : graded_monoid A) : 1 * a = a) (mul_one (a : graded_monoid A) : a * 1 = a) (mul_assoc (a b c : graded_monoid A) : a * b * c = a * (b * c)) (gnpow : Π (n : ℕ) {i}, A i → A (n • i) := gmonoid.gnpow_rec) (gnpow_zero' : Π (a : graded_monoid A), graded_monoid.mk _ (gnpow 0 a.snd) = 1 . gmonoid.apply_gnpow_rec_zero_tac) (gnpow_succ' : Π (n : ℕ) (a : graded_monoid A), (graded_monoid.mk _ $ gnpow n.succ a.snd) = a * ⟨_, gnpow n a.snd⟩ . gmonoid.apply_gnpow_rec_succ_tac) /-- `gmonoid` implies a `monoid (graded_monoid A)`. -/ instance gmonoid.to_monoid [add_monoid ι] [gmonoid A] : monoid (graded_monoid A) := { one := (1), mul := (*), npow := λ n a, graded_monoid.mk _ (gmonoid.gnpow n a.snd), npow_zero' := λ a, gmonoid.gnpow_zero' a, npow_succ' := λ n a, gmonoid.gnpow_succ' n a, one_mul := gmonoid.one_mul, mul_one := gmonoid.mul_one, mul_assoc := gmonoid.mul_assoc } lemma mk_pow [add_monoid ι] [gmonoid A] {i} (a : A i) (n : ℕ) : mk i a ^ n = mk (n • i) (gmonoid.gnpow _ a) := begin induction n with n, { rw [pow_zero], exact (gmonoid.gnpow_zero' ⟨_, a⟩).symm, }, { rw [pow_succ, n_ih, mk_mul_mk], exact (gmonoid.gnpow_succ' n ⟨_, a⟩).symm, }, end /-- A graded version of `comm_monoid`. -/ class gcomm_monoid [add_comm_monoid ι] extends gmonoid A := (mul_comm (a : graded_monoid A) (b : graded_monoid A) : a * b = b * a) /-- `gcomm_monoid` implies a `comm_monoid (graded_monoid A)`, although this is only used as an instance locally to define notation in `gmonoid` and similar typeclasses. -/ instance gcomm_monoid.to_comm_monoid [add_comm_monoid ι] [gcomm_monoid A] : comm_monoid (graded_monoid A) := { mul_comm := gcomm_monoid.mul_comm, ..gmonoid.to_monoid A } end defs /-! ### Instances for `A 0` The various `g*` instances are enough to promote the `add_comm_monoid (A 0)` structure to various types of multiplicative structure. -/ section grade_zero variables (A : ι → Type*) section one variables [has_zero ι] [ghas_one A] /-- `1 : A 0` is the value provided in `ghas_one.one`. -/ @[nolint unused_arguments] instance grade_zero.has_one : has_one (A 0) := ⟨ghas_one.one⟩ end one section mul variables [add_zero_class ι] [ghas_mul A] /-- `(•) : A 0 → A i → A i` is the value provided in `graded_monoid.ghas_mul.mul`, composed with an `eq.rec` to turn `A (0 + i)` into `A i`. -/ instance grade_zero.has_smul (i : ι) : has_smul (A 0) (A i) := { smul := λ x y, (zero_add i).rec (ghas_mul.mul x y) } /-- `(*) : A 0 → A 0 → A 0` is the value provided in `graded_monoid.ghas_mul.mul`, composed with an `eq.rec` to turn `A (0 + 0)` into `A 0`. -/ instance grade_zero.has_mul : has_mul (A 0) := { mul := (•) } variables {A} @[simp] lemma mk_zero_smul {i} (a : A 0) (b : A i) : mk _ (a • b) = mk _ a * mk _ b := sigma.ext (zero_add _).symm $ eq_rec_heq _ _ @[simp] lemma grade_zero.smul_eq_mul (a b : A 0) : a • b = a * b := rfl end mul section monoid variables [add_monoid ι] [gmonoid A] instance : has_pow (A 0) ℕ := { pow := λ x n, (nsmul_zero n).rec (gmonoid.gnpow n x : A (n • 0)) } variables {A} @[simp] lemma mk_zero_pow (a : A 0) (n : ℕ) : mk _ (a ^ n) = mk _ a ^ n := sigma.ext (nsmul_zero n).symm $ eq_rec_heq _ _ variables (A) /-- The `monoid` structure derived from `gmonoid A`. -/ instance grade_zero.monoid : monoid (A 0) := function.injective.monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow end monoid section monoid variables [add_comm_monoid ι] [gcomm_monoid A] /-- The `comm_monoid` structure derived from `gcomm_monoid A`. -/ instance grade_zero.comm_monoid : comm_monoid (A 0) := function.injective.comm_monoid (mk 0) sigma_mk_injective rfl mk_zero_smul mk_zero_pow end monoid section mul_action variables [add_monoid ι] [gmonoid A] /-- `graded_monoid.mk 0` is a `monoid_hom`, using the `graded_monoid.grade_zero.monoid` structure. -/ def mk_zero_monoid_hom : A 0 →* (graded_monoid A) := { to_fun := mk 0, map_one' := rfl, map_mul' := mk_zero_smul } /-- Each grade `A i` derives a `A 0`-action structure from `gmonoid A`. -/ instance grade_zero.mul_action {i} : mul_action (A 0) (A i) := begin letI := mul_action.comp_hom (graded_monoid A) (mk_zero_monoid_hom A), exact function.injective.mul_action (mk i) sigma_mk_injective mk_zero_smul, end end mul_action end grade_zero end graded_monoid /-! ### Dependent products of graded elements -/ section dprod variables {α : Type*} {A : ι → Type*} [add_monoid ι] [graded_monoid.gmonoid A] /-- The index used by `list.dprod`. Propositionally this is equal to `(l.map fι).sum`, but definitionally it needs to have a different form to avoid introducing `eq.rec`s in `list.dprod`. -/ def list.dprod_index (l : list α) (fι : α → ι) : ι := l.foldr (λ i b, fι i + b) 0 @[simp] lemma list.dprod_index_nil (fι : α → ι) : ([] : list α).dprod_index fι = 0 := rfl @[simp] lemma list.dprod_index_cons (a : α) (l : list α) (fι : α → ι) : (a :: l).dprod_index fι = fι a + l.dprod_index fι := rfl lemma list.dprod_index_eq_map_sum (l : list α) (fι : α → ι) : l.dprod_index fι = (l.map fι).sum := begin dunfold list.dprod_index, induction l, { simp, }, { simp [l_ih], }, end /-- A dependent product for graded monoids represented by the indexed family of types `A i`. This is a dependent version of `(l.map fA).prod`. For a list `l : list α`, this computes the product of `fA a` over `a`, where each `fA` is of type `A (fι a)`. -/ def list.dprod (l : list α) (fι : α → ι) (fA : Π a, A (fι a)) : A (l.dprod_index fι) := l.foldr_rec_on _ _ graded_monoid.ghas_one.one (λ i x a ha, graded_monoid.ghas_mul.mul (fA a) x) @[simp] lemma list.dprod_nil (fι : α → ι) (fA : Π a, A (fι a)) : (list.nil : list α).dprod fι fA = graded_monoid.ghas_one.one := rfl -- the `( : _)` in this lemma statement results in the type on the RHS not being unfolded, which -- is nicer in the goal view. @[simp] lemma list.dprod_cons (fι : α → ι) (fA : Π a, A (fι a)) (a : α) (l : list α) : (a :: l).dprod fι fA = (graded_monoid.ghas_mul.mul (fA a) (l.dprod fι fA) : _) := rfl lemma graded_monoid.mk_list_dprod (l : list α) (fι : α → ι) (fA : Π a, A (fι a)) : graded_monoid.mk _ (l.dprod fι fA) = (l.map (λ a, graded_monoid.mk (fι a) (fA a))).prod := begin induction l, { simp, refl }, { simp [←l_ih, graded_monoid.mk_mul_mk, list.prod_cons], refl, }, end /-- A variant of `graded_monoid.mk_list_dprod` for rewriting in the other direction. -/ lemma graded_monoid.list_prod_map_eq_dprod (l : list α) (f : α → graded_monoid A) : (l.map f).prod = graded_monoid.mk _ (l.dprod (λ i, (f i).1) (λ i, (f i).2)) := begin rw [graded_monoid.mk_list_dprod, graded_monoid.mk], simp_rw sigma.eta, end lemma graded_monoid.list_prod_of_fn_eq_dprod {n : ℕ} (f : fin n → graded_monoid A) : (list.of_fn f).prod = graded_monoid.mk _ ((list.fin_range n).dprod (λ i, (f i).1) (λ i, (f i).2)) := by rw [list.of_fn_eq_map, graded_monoid.list_prod_map_eq_dprod] end dprod /-! ### Concrete instances -/ section variables (ι) {R : Type*} @[simps one] instance has_one.ghas_one [has_zero ι] [has_one R] : graded_monoid.ghas_one (λ i : ι, R) := { one := 1 } @[simps mul] instance has_mul.ghas_mul [has_add ι] [has_mul R] : graded_monoid.ghas_mul (λ i : ι, R) := { mul := λ i j, (*) } /-- If all grades are the same type and themselves form a monoid, then there is a trivial grading structure. -/ @[simps gnpow] instance monoid.gmonoid [add_monoid ι] [monoid R] : graded_monoid.gmonoid (λ i : ι, R) := { one_mul := λ a, sigma.ext (zero_add _) (heq_of_eq (one_mul _)), mul_one := λ a, sigma.ext (add_zero _) (heq_of_eq (mul_one _)), mul_assoc := λ a b c, sigma.ext (add_assoc _ _ _) (heq_of_eq (mul_assoc _ _ _)), gnpow := λ n i a, a ^ n, gnpow_zero' := λ a, sigma.ext (zero_nsmul _) (heq_of_eq (monoid.npow_zero' _)), gnpow_succ' := λ n ⟨i, a⟩, sigma.ext (succ_nsmul _ _) (heq_of_eq (monoid.npow_succ' _ _)), ..has_one.ghas_one ι, ..has_mul.ghas_mul ι } /-- If all grades are the same type and themselves form a commutative monoid, then there is a trivial grading structure. -/ instance comm_monoid.gcomm_monoid [add_comm_monoid ι] [comm_monoid R] : graded_monoid.gcomm_monoid (λ i : ι, R) := { mul_comm := λ a b, sigma.ext (add_comm _ _) (heq_of_eq (mul_comm _ _)), ..monoid.gmonoid ι } /-- When all the indexed types are the same, the dependent product is just the regular product. -/ @[simp] lemma list.dprod_monoid {α} [add_monoid ι] [monoid R] (l : list α) (fι : α → ι) (fA : α → R) : (l.dprod fι fA : (λ i : ι, R) _) = ((l.map fA).prod : _) := begin induction l, { rw [list.dprod_nil, list.map_nil, list.prod_nil], refl }, { rw [list.dprod_cons, list.map_cons, list.prod_cons, l_ih], refl }, end end /-! ### Shorthands for creating instance of the above typeclasses for collections of subobjects -/ section subobjects variables {R : Type*} /-- A version of `graded_monoid.ghas_one` for internally graded objects. -/ class set_like.has_graded_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S) : Prop := (one_mem : (1 : R) ∈ A 0) lemma set_like.one_mem_graded {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S) [set_like.has_graded_one A] : (1 : R) ∈ A 0 := set_like.has_graded_one.one_mem instance set_like.ghas_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S) [set_like.has_graded_one A] : graded_monoid.ghas_one (λ i, A i) := { one := ⟨1, set_like.one_mem_graded _⟩ } @[simp] lemma set_like.coe_ghas_one {S : Type*} [set_like S R] [has_one R] [has_zero ι] (A : ι → S) [set_like.has_graded_one A] : ↑(@graded_monoid.ghas_one.one _ (λ i, A i) _ _) = (1 : R) := rfl /-- A version of `graded_monoid.ghas_one` for internally graded objects. -/ class set_like.has_graded_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S) : Prop := (mul_mem : ∀ ⦃i j⦄ {gi gj}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j)) lemma set_like.mul_mem_graded {S : Type*} [set_like S R] [has_mul R] [has_add ι] {A : ι → S} [set_like.has_graded_mul A] ⦃i j⦄ {gi gj} (hi : gi ∈ A i) (hj : gj ∈ A j) : gi * gj ∈ A (i + j) := set_like.has_graded_mul.mul_mem hi hj instance set_like.ghas_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S) [set_like.has_graded_mul A] : graded_monoid.ghas_mul (λ i, A i) := { mul := λ i j a b, ⟨(a * b : R), set_like.mul_mem_graded a.prop b.prop⟩ } @[simp] lemma set_like.coe_ghas_mul {S : Type*} [set_like S R] [has_mul R] [has_add ι] (A : ι → S) [set_like.has_graded_mul A] {i j : ι} (x : A i) (y : A j) : ↑(@graded_monoid.ghas_mul.mul _ (λ i, A i) _ _ _ _ x y) = (x * y : R) := rfl /-- A version of `graded_monoid.gmonoid` for internally graded objects. -/ class set_like.graded_monoid {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S) extends set_like.has_graded_one A, set_like.has_graded_mul A : Prop namespace set_like variables {S : Type*} [set_like S R] [monoid R] [add_monoid ι] variables {A : ι → S} [set_like.graded_monoid A] lemma pow_mem_graded (n : ℕ) {r : R} {i : ι} (h : r ∈ A i) : r ^ n ∈ A (n • i) := begin induction n, { rw [pow_zero, zero_nsmul], exact one_mem_graded _ }, { rw [pow_succ', succ_nsmul'], exact mul_mem_graded n_ih h }, end lemma list_prod_map_mem_graded {ι'} (l : list ι') (i : ι' → ι) (r : ι' → R) (h : ∀ j ∈ l, r j ∈ A (i j)) : (l.map r).prod ∈ A (l.map i).sum := begin induction l, { rw [list.map_nil, list.map_nil, list.prod_nil, list.sum_nil], exact one_mem_graded _ }, { rw [list.map_cons, list.map_cons, list.prod_cons, list.sum_cons], exact mul_mem_graded (h _ $ list.mem_cons_self _ _) (l_ih $ λ j hj, h _ $ list.mem_cons_of_mem _ hj) }, end lemma list_prod_of_fn_mem_graded {n} (i : fin n → ι) (r : fin n → R) (h : ∀ j, r j ∈ A (i j)) : (list.of_fn r).prod ∈ A (list.of_fn i).sum := begin rw [list.of_fn_eq_map, list.of_fn_eq_map], exact list_prod_map_mem_graded _ _ _ (λ _ _, h _), end end set_like /-- Build a `gmonoid` instance for a collection of subobjects. -/ instance set_like.gmonoid {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S) [set_like.graded_monoid A] : graded_monoid.gmonoid (λ i, A i) := { one_mul := λ ⟨i, a, h⟩, sigma.subtype_ext (zero_add _) (one_mul _), mul_one := λ ⟨i, a, h⟩, sigma.subtype_ext (add_zero _) (mul_one _), mul_assoc := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩ ⟨k, c, hc⟩, sigma.subtype_ext (add_assoc _ _ _) (mul_assoc _ _ _), gnpow := λ n i a, ⟨a ^ n, set_like.pow_mem_graded n a.prop⟩, gnpow_zero' := λ n, sigma.subtype_ext (zero_nsmul _) (pow_zero _), gnpow_succ' := λ n a, sigma.subtype_ext (succ_nsmul _ _) (pow_succ _ _), ..set_like.ghas_one A, ..set_like.ghas_mul A } @[simp] lemma set_like.coe_gnpow {S : Type*} [set_like S R] [monoid R] [add_monoid ι] (A : ι → S) [set_like.graded_monoid A] {i : ι} (x : A i) (n : ℕ) : ↑(@graded_monoid.gmonoid.gnpow _ (λ i, A i) _ _ n _ x) = (x ^ n : R) := rfl /-- Build a `gcomm_monoid` instance for a collection of subobjects. -/ instance set_like.gcomm_monoid {S : Type*} [set_like S R] [comm_monoid R] [add_comm_monoid ι] (A : ι → S) [set_like.graded_monoid A] : graded_monoid.gcomm_monoid (λ i, A i) := { mul_comm := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩, sigma.subtype_ext (add_comm _ _) (mul_comm _ _), ..set_like.gmonoid A} section dprod open set_like set_like.graded_monoid variables {α S : Type*} [set_like S R] [monoid R] [add_monoid ι] /-- Coercing a dependent product of subtypes is the same as taking the regular product of the coercions. -/ @[simp] lemma set_like.coe_list_dprod (A : ι → S) [set_like.graded_monoid A] (fι : α → ι) (fA : Π a, A (fι a)) (l : list α) : ↑(l.dprod fι fA : (λ i, ↥(A i)) _) = (list.prod (l.map (λ a, fA a)) : R) := begin induction l, { rw [list.dprod_nil, coe_ghas_one, list.map_nil, list.prod_nil] }, { rw [list.dprod_cons, coe_ghas_mul, list.map_cons, list.prod_cons, l_ih], }, end include R /-- A version of `list.coe_dprod_set_like` with `subtype.mk`. -/ lemma set_like.list_dprod_eq (A : ι → S) [set_like.graded_monoid A] (fι : α → ι) (fA : Π a, A (fι a)) (l : list α) : (l.dprod fι fA : (λ i, ↥(A i)) _) = ⟨list.prod (l.map (λ a, fA a)), (l.dprod_index_eq_map_sum fι).symm ▸ list_prod_map_mem_graded l _ _ (λ i hi, (fA i).prop)⟩ := subtype.ext $ set_like.coe_list_dprod _ _ _ _ end dprod end subobjects section homogeneous_elements variables {R S : Type*} [set_like S R] /-- An element `a : R` is said to be homogeneous if there is some `i : ι` such that `a ∈ A i`. -/ def set_like.is_homogeneous (A : ι → S) (a : R) : Prop := ∃ i, a ∈ A i @[simp] lemma set_like.is_homogeneous_coe {A : ι → S} {i} (x : A i) : set_like.is_homogeneous A (x : R) := ⟨i, x.prop⟩ lemma set_like.is_homogeneous_one [has_zero ι] [has_one R] (A : ι → S) [set_like.has_graded_one A] : set_like.is_homogeneous A (1 : R) := ⟨0, set_like.one_mem_graded _⟩ lemma set_like.is_homogeneous.mul [has_add ι] [has_mul R] {A : ι → S} [set_like.has_graded_mul A] {a b : R} : set_like.is_homogeneous A a → set_like.is_homogeneous A b → set_like.is_homogeneous A (a * b) | ⟨i, hi⟩ ⟨j, hj⟩ := ⟨i + j, set_like.mul_mem_graded hi hj⟩ /-- When `A` is a `set_like.graded_monoid A`, then the homogeneous elements forms a submonoid. -/ def set_like.homogeneous_submonoid [add_monoid ι] [monoid R] (A : ι → S) [set_like.graded_monoid A] : submonoid R := { carrier := { a | set_like.is_homogeneous A a }, one_mem' := set_like.is_homogeneous_one A, mul_mem' := λ a b, set_like.is_homogeneous.mul } end homogeneous_elements