/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Callum Sutton, Yury Kudryashov -/ import algebra.group.type_tags import algebra.group_with_zero.basic import data.pi.algebra /-! # Multiplicative and additive equivs In this file we define two extensions of `equiv` called `add_equiv` and `mul_equiv`, which are datatypes representing isomorphisms of `add_monoid`s/`add_group`s and `monoid`s/`group`s. ## Notations * ``infix ` ≃* `:25 := mul_equiv`` * ``infix ` ≃+ `:25 := add_equiv`` The extended equivs all have coercions to functions, and the coercions are the canonical notation when treating the isomorphisms as maps. ## Implementation notes The fields for `mul_equiv`, `add_equiv` now avoid the unbundled `is_mul_hom` and `is_add_hom`, as these are deprecated. ## Tags equiv, mul_equiv, add_equiv -/ variables {F α β A B M N P Q G H : Type*} /-- Makes a multiplicative inverse from a bijection which preserves multiplication. -/ @[to_additive "Makes an additive inverse from a bijection which preserves addition."] def mul_hom.inverse [has_mul M] [has_mul N] (f : M →ₙ* N) (g : N → M) (h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : N →ₙ* M := { to_fun := g, map_mul' := λ x y, calc g (x * y) = g (f (g x) * f (g y)) : by rw [h₂ x, h₂ y] ... = g (f (g x * g y)) : by rw f.map_mul ... = g x * g y : h₁ _, } /-- The inverse of a bijective `monoid_hom` is a `monoid_hom`. -/ @[to_additive "The inverse of a bijective `add_monoid_hom` is an `add_monoid_hom`.", simps] def monoid_hom.inverse {A B : Type*} [monoid A] [monoid B] (f : A →* B) (g : B → A) (h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : B →* A := { to_fun := g, map_one' := by rw [← f.map_one, h₁], .. (f : A →ₙ* B).inverse g h₁ h₂, } set_option old_structure_cmd true /-- add_equiv α β is the type of an equiv α ≃ β which preserves addition. -/ @[ancestor equiv add_hom] structure add_equiv (A B : Type*) [has_add A] [has_add B] extends A ≃ B, add_hom A B /-- `add_equiv_class F A B` states that `F` is a type of addition-preserving morphisms. You should extend this class when you extend `add_equiv`. -/ class add_equiv_class (F A B : Type*) [has_add A] [has_add B] extends equiv_like F A B := (map_add : ∀ (f : F) a b, f (a + b) = f a + f b) /-- The `equiv` underlying an `add_equiv`. -/ add_decl_doc add_equiv.to_equiv /-- The `add_hom` underlying a `add_equiv`. -/ add_decl_doc add_equiv.to_add_hom /-- `mul_equiv α β` is the type of an equiv `α ≃ β` which preserves multiplication. -/ @[ancestor equiv mul_hom, to_additive] structure mul_equiv (M N : Type*) [has_mul M] [has_mul N] extends M ≃ N, M →ₙ* N /-- The `equiv` underlying a `mul_equiv`. -/ add_decl_doc mul_equiv.to_equiv /-- The `mul_hom` underlying a `mul_equiv`. -/ add_decl_doc mul_equiv.to_mul_hom /-- `mul_equiv_class F A B` states that `F` is a type of multiplication-preserving morphisms. You should extend this class when you extend `mul_equiv`. -/ @[to_additive] class mul_equiv_class (F A B : Type*) [has_mul A] [has_mul B] extends equiv_like F A B := (map_mul : ∀ (f : F) a b, f (a * b) = f a * f b) infix ` ≃* `:25 := mul_equiv infix ` ≃+ `:25 := add_equiv namespace mul_equiv_class variables (F) @[priority 100, -- See note [lower instance priority] to_additive] instance [has_mul M] [has_mul N] [h : mul_equiv_class F M N] : mul_hom_class F M N := { coe := (coe : F → M → N), coe_injective' := @fun_like.coe_injective F _ _ _, .. h } @[priority 100, -- See note [lower instance priority] to_additive] instance [mul_one_class M] [mul_one_class N] [mul_equiv_class F M N] : monoid_hom_class F M N := { coe := (coe : F → M → N), map_one := λ e, calc e 1 = e 1 * 1 : (mul_one _).symm ... = e 1 * e (inv e (1 : N) : M) : congr_arg _ (right_inv e 1).symm ... = e (inv e (1 : N)) : by rw [← map_mul, one_mul] ... = 1 : right_inv e 1, .. mul_equiv_class.mul_hom_class F } @[priority 100] -- See note [lower instance priority] instance to_monoid_with_zero_hom_class {α β : Type*} [mul_zero_one_class α] [mul_zero_one_class β] [mul_equiv_class F α β] : monoid_with_zero_hom_class F α β := { map_zero := λ e, calc e 0 = e 0 * e (equiv_like.inv e 0) : by rw [←map_mul, zero_mul] ... = 0 : by { convert mul_zero _, exact equiv_like.right_inv e _ } ..mul_equiv_class.monoid_hom_class _ } variables {F} @[simp, to_additive] lemma map_eq_one_iff {M N} [mul_one_class M] [mul_one_class N] [mul_equiv_class F M N] (h : F) {x : M} : h x = 1 ↔ x = 1 := map_eq_one_iff h (equiv_like.injective h) @[to_additive] lemma map_ne_one_iff {M N} [mul_one_class M] [mul_one_class N] [mul_equiv_class F M N] (h : F) {x : M} : h x ≠ 1 ↔ x ≠ 1 := map_ne_one_iff h (equiv_like.injective h) end mul_equiv_class @[to_additive] instance [has_mul α] [has_mul β] [mul_equiv_class F α β] : has_coe_t F (α ≃* β) := ⟨λ f, { to_fun := f, inv_fun := equiv_like.inv f, left_inv := equiv_like.left_inv f, right_inv := equiv_like.right_inv f, map_mul' := map_mul f }⟩ namespace mul_equiv @[to_additive] instance [has_mul M] [has_mul N] : has_coe_to_fun (M ≃* N) (λ _, M → N) := ⟨mul_equiv.to_fun⟩ @[to_additive] instance [has_mul M] [has_mul N] : mul_equiv_class (M ≃* N) M N := { coe := to_fun, inv := inv_fun, left_inv := left_inv, right_inv := right_inv, coe_injective' := λ f g h₁ h₂, by { cases f, cases g, congr' }, map_mul := map_mul' } variables [has_mul M] [has_mul N] [has_mul P] [has_mul Q] @[simp, to_additive] lemma to_equiv_eq_coe (f : M ≃* N) : f.to_equiv = f := rfl @[simp, to_additive] lemma to_fun_eq_coe {f : M ≃* N} : f.to_fun = f := rfl @[simp, to_additive] lemma coe_to_equiv {f : M ≃* N} : ⇑(f : M ≃ N) = f := rfl @[simp, to_additive] lemma coe_to_mul_hom {f : M ≃* N} : ⇑f.to_mul_hom = f := rfl /-- A multiplicative isomorphism preserves multiplication. -/ @[to_additive "An additive isomorphism preserves addition."] protected lemma map_mul (f : M ≃* N) : ∀ x y, f (x * y) = f x * f y := map_mul f /-- Makes a multiplicative isomorphism from a bijection which preserves multiplication. -/ @[to_additive "Makes an additive isomorphism from a bijection which preserves addition."] def mk' (f : M ≃ N) (h : ∀ x y, f (x * y) = f x * f y) : M ≃* N := ⟨f.1, f.2, f.3, f.4, h⟩ @[to_additive] protected lemma bijective (e : M ≃* N) : function.bijective e := equiv_like.bijective e @[to_additive] protected lemma injective (e : M ≃* N) : function.injective e := equiv_like.injective e @[to_additive] protected lemma surjective (e : M ≃* N) : function.surjective e := equiv_like.surjective e /-- The identity map is a multiplicative isomorphism. -/ @[refl, to_additive "The identity map is an additive isomorphism."] def refl (M : Type*) [has_mul M] : M ≃* M := { map_mul' := λ _ _, rfl, ..equiv.refl _} @[to_additive] instance : inhabited (M ≃* M) := ⟨refl M⟩ /-- The inverse of an isomorphism is an isomorphism. -/ @[symm, to_additive "The inverse of an isomorphism is an isomorphism."] def symm (h : M ≃* N) : N ≃* M := { map_mul' := (h.to_mul_hom.inverse h.to_equiv.symm h.left_inv h.right_inv).map_mul, .. h.to_equiv.symm} @[simp, to_additive] lemma inv_fun_eq_symm {f : M ≃* N} : f.inv_fun = f.symm := rfl /-- See Note [custom simps projection] -/ -- we don't hyperlink the note in the additive version, since that breaks syntax highlighting -- in the whole file. @[to_additive "See Note custom simps projection"] def simps.symm_apply (e : M ≃* N) : N → M := e.symm initialize_simps_projections add_equiv (to_fun → apply, inv_fun → symm_apply) initialize_simps_projections mul_equiv (to_fun → apply, inv_fun → symm_apply) @[simp, to_additive] theorem to_equiv_symm (f : M ≃* N) : f.symm.to_equiv = f.to_equiv.symm := rfl @[simp, to_additive] theorem coe_mk (f : M → N) (g h₁ h₂ h₃) : ⇑(mul_equiv.mk f g h₁ h₂ h₃) = f := rfl @[simp, to_additive] lemma to_equiv_mk (f : M → N) (g : N → M) (h₁ h₂ h₃) : (mk f g h₁ h₂ h₃).to_equiv = ⟨f, g, h₁, h₂⟩ := rfl @[simp, to_additive] lemma symm_symm : ∀ (f : M ≃* N), f.symm.symm = f | ⟨f, g, h₁, h₂, h₃⟩ := rfl @[to_additive] lemma symm_bijective : function.bijective (symm : (M ≃* N) → (N ≃* M)) := equiv.bijective ⟨symm, symm, symm_symm, symm_symm⟩ @[simp, to_additive] theorem symm_mk (f : M → N) (g h₁ h₂ h₃) : (mul_equiv.mk f g h₁ h₂ h₃).symm = { to_fun := g, inv_fun := f, ..(mul_equiv.mk f g h₁ h₂ h₃).symm} := rfl @[simp, to_additive] theorem refl_symm : (refl M).symm = refl M := rfl /-- Transitivity of multiplication-preserving isomorphisms -/ @[trans, to_additive "Transitivity of addition-preserving isomorphisms"] def trans (h1 : M ≃* N) (h2 : N ≃* P) : (M ≃* P) := { map_mul' := λ x y, show h2 (h1 (x * y)) = h2 (h1 x) * h2 (h1 y), by rw [h1.map_mul, h2.map_mul], ..h1.to_equiv.trans h2.to_equiv } /-- `e.symm` is a right inverse of `e`, written as `e (e.symm y) = y`. -/ @[simp, to_additive "`e.symm` is a right inverse of `e`, written as `e (e.symm y) = y`."] lemma apply_symm_apply (e : M ≃* N) (y : N) : e (e.symm y) = y := e.to_equiv.apply_symm_apply y /-- `e.symm` is a left inverse of `e`, written as `e.symm (e y) = y`. -/ @[simp, to_additive "`e.symm` is a left inverse of `e`, written as `e.symm (e y) = y`."] lemma symm_apply_apply (e : M ≃* N) (x : M) : e.symm (e x) = x := e.to_equiv.symm_apply_apply x @[simp, to_additive] theorem symm_comp_self (e : M ≃* N) : e.symm ∘ e = id := funext e.symm_apply_apply @[simp, to_additive] theorem self_comp_symm (e : M ≃* N) : e ∘ e.symm = id := funext e.apply_symm_apply @[simp, to_additive] theorem coe_refl : ⇑(refl M) = id := rfl @[simp, to_additive] theorem refl_apply (m : M) : refl M m = m := rfl @[simp, to_additive] theorem coe_trans (e₁ : M ≃* N) (e₂ : N ≃* P) : ⇑(e₁.trans e₂) = e₂ ∘ e₁ := rfl @[simp, to_additive] theorem trans_apply (e₁ : M ≃* N) (e₂ : N ≃* P) (m : M) : e₁.trans e₂ m = e₂ (e₁ m) := rfl @[simp, to_additive] theorem symm_trans_apply (e₁ : M ≃* N) (e₂ : N ≃* P) (p : P) : (e₁.trans e₂).symm p = e₁.symm (e₂.symm p) := rfl @[simp, to_additive] theorem apply_eq_iff_eq (e : M ≃* N) {x y : M} : e x = e y ↔ x = y := e.injective.eq_iff @[to_additive] lemma apply_eq_iff_symm_apply (e : M ≃* N) {x : M} {y : N} : e x = y ↔ x = e.symm y := e.to_equiv.apply_eq_iff_eq_symm_apply @[to_additive] lemma symm_apply_eq (e : M ≃* N) {x y} : e.symm x = y ↔ x = e y := e.to_equiv.symm_apply_eq @[to_additive] lemma eq_symm_apply (e : M ≃* N) {x y} : y = e.symm x ↔ e y = x := e.to_equiv.eq_symm_apply @[to_additive] lemma eq_comp_symm {α : Type*} (e : M ≃* N) (f : N → α) (g : M → α) : f = g ∘ e.symm ↔ f ∘ e = g := e.to_equiv.eq_comp_symm f g @[to_additive] lemma comp_symm_eq {α : Type*} (e : M ≃* N) (f : N → α) (g : M → α) : g ∘ e.symm = f ↔ g = f ∘ e := e.to_equiv.comp_symm_eq f g @[to_additive] lemma eq_symm_comp {α : Type*} (e : M ≃* N) (f : α → M) (g : α → N) : f = e.symm ∘ g ↔ e ∘ f = g := e.to_equiv.eq_symm_comp f g @[to_additive] lemma symm_comp_eq {α : Type*} (e : M ≃* N) (f : α → M) (g : α → N) : e.symm ∘ g = f ↔ g = e ∘ f := e.to_equiv.symm_comp_eq f g /-- Two multiplicative isomorphisms agree if they are defined by the same underlying function. -/ @[ext, to_additive "Two additive isomorphisms agree if they are defined by the same underlying function."] lemma ext {f g : mul_equiv M N} (h : ∀ x, f x = g x) : f = g := fun_like.ext f g h @[to_additive] lemma ext_iff {f g : mul_equiv M N} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff @[simp, to_additive] lemma mk_coe (e : M ≃* N) (e' h₁ h₂ h₃) : (⟨e, e', h₁, h₂, h₃⟩ : M ≃* N) = e := ext $ λ _, rfl @[simp, to_additive] lemma mk_coe' (e : M ≃* N) (f h₁ h₂ h₃) : (mul_equiv.mk f ⇑e h₁ h₂ h₃ : N ≃* M) = e.symm := symm_bijective.injective $ ext $ λ x, rfl @[to_additive] protected lemma congr_arg {f : mul_equiv M N} {x x' : M} : x = x' → f x = f x' := fun_like.congr_arg f @[to_additive] protected lemma congr_fun {f g : mul_equiv M N} (h : f = g) (x : M) : f x = g x := fun_like.congr_fun h x /-- The `mul_equiv` between two monoids with a unique element. -/ @[to_additive "The `add_equiv` between two add_monoids with a unique element."] def mul_equiv_of_unique {M N} [unique M] [unique N] [has_mul M] [has_mul N] : M ≃* N := { map_mul' := λ _ _, subsingleton.elim _ _, ..equiv.equiv_of_unique M N } /-- There is a unique monoid homomorphism between two monoids with a unique element. -/ @[to_additive "There is a unique additive monoid homomorphism between two additive monoids with a unique element."] instance {M N} [unique M] [unique N] [has_mul M] [has_mul N] : unique (M ≃* N) := { default := mul_equiv_of_unique , uniq := λ _, ext $ λ x, subsingleton.elim _ _} /-! ## Monoids -/ /-- A multiplicative isomorphism of monoids sends `1` to `1` (and is hence a monoid isomorphism). -/ @[to_additive "An additive isomorphism of additive monoids sends `0` to `0` (and is hence an additive monoid isomorphism)."] protected lemma map_one {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) : h 1 = 1 := map_one h @[to_additive] protected lemma map_eq_one_iff {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) {x : M} : h x = 1 ↔ x = 1 := mul_equiv_class.map_eq_one_iff h @[to_additive] lemma map_ne_one_iff {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) {x : M} : h x ≠ 1 ↔ x ≠ 1 := mul_equiv_class.map_ne_one_iff h /-- A bijective `semigroup` homomorphism is an isomorphism -/ @[to_additive "A bijective `add_semigroup` homomorphism is an isomorphism", simps apply] noncomputable def of_bijective {M N F} [has_mul M] [has_mul N] [mul_hom_class F M N] (f : F) (hf : function.bijective f) : M ≃* N := { map_mul' := map_mul f, ..equiv.of_bijective f hf } @[simp] lemma of_bijective_apply_symm_apply {M N} [mul_one_class M] [mul_one_class N] {n : N} (f : M →* N) (hf : function.bijective f) : f ((equiv.of_bijective f hf).symm n) = n := (mul_equiv.of_bijective f hf).apply_symm_apply n /-- Extract the forward direction of a multiplicative equivalence as a multiplication-preserving function. -/ @[to_additive "Extract the forward direction of an additive equivalence as an addition-preserving function."] def to_monoid_hom {M N} [mul_one_class M] [mul_one_class N] (h : M ≃* N) : (M →* N) := { map_one' := h.map_one, .. h } @[simp, to_additive] lemma coe_to_monoid_hom {M N} [mul_one_class M] [mul_one_class N] (e : M ≃* N) : ⇑e.to_monoid_hom = e := rfl @[to_additive] lemma to_monoid_hom_injective {M N} [mul_one_class M] [mul_one_class N] : function.injective (to_monoid_hom : (M ≃* N) → M →* N) := λ f g h, mul_equiv.ext (monoid_hom.ext_iff.1 h) /-- A multiplicative analogue of `equiv.arrow_congr`, where the equivalence between the targets is multiplicative. -/ @[to_additive "An additive analogue of `equiv.arrow_congr`, where the equivalence between the targets is additive.", simps apply] def arrow_congr {M N P Q : Type*} [has_mul P] [has_mul Q] (f : M ≃ N) (g : P ≃* Q) : (M → P) ≃* (N → Q) := { to_fun := λ h n, g (h (f.symm n)), inv_fun := λ k m, g.symm (k (f m)), left_inv := λ h, by { ext, simp, }, right_inv := λ k, by { ext, simp, }, map_mul' := λ h k, by { ext, simp, }, } /-- A multiplicative analogue of `equiv.arrow_congr`, for multiplicative maps from a monoid to a commutative monoid. -/ @[to_additive "An additive analogue of `equiv.arrow_congr`, for additive maps from an additive monoid to a commutative additive monoid.", simps apply] def monoid_hom_congr {M N P Q} [mul_one_class M] [mul_one_class N] [comm_monoid P] [comm_monoid Q] (f : M ≃* N) (g : P ≃* Q) : (M →* P) ≃* (N →* Q) := { to_fun := λ h, g.to_monoid_hom.comp (h.comp f.symm.to_monoid_hom), inv_fun := λ k, g.symm.to_monoid_hom.comp (k.comp f.to_monoid_hom), left_inv := λ h, by { ext, simp, }, right_inv := λ k, by { ext, simp, }, map_mul' := λ h k, by { ext, simp, }, } /-- A family of multiplicative equivalences `Π j, (Ms j ≃* Ns j)` generates a multiplicative equivalence between `Π j, Ms j` and `Π j, Ns j`. This is the `mul_equiv` version of `equiv.Pi_congr_right`, and the dependent version of `mul_equiv.arrow_congr`. -/ @[to_additive add_equiv.Pi_congr_right "A family of additive equivalences `Π j, (Ms j ≃+ Ns j)` generates an additive equivalence between `Π j, Ms j` and `Π j, Ns j`. This is the `add_equiv` version of `equiv.Pi_congr_right`, and the dependent version of `add_equiv.arrow_congr`.", simps apply] def Pi_congr_right {η : Type*} {Ms Ns : η → Type*} [Π j, has_mul (Ms j)] [Π j, has_mul (Ns j)] (es : ∀ j, Ms j ≃* Ns j) : (Π j, Ms j) ≃* (Π j, Ns j) := { to_fun := λ x j, es j (x j), inv_fun := λ x j, (es j).symm (x j), map_mul' := λ x y, funext $ λ j, (es j).map_mul (x j) (y j), .. equiv.Pi_congr_right (λ j, (es j).to_equiv) } @[simp] lemma Pi_congr_right_refl {η : Type*} {Ms : η → Type*} [Π j, has_mul (Ms j)] : Pi_congr_right (λ j, mul_equiv.refl (Ms j)) = mul_equiv.refl _ := rfl @[simp] lemma Pi_congr_right_symm {η : Type*} {Ms Ns : η → Type*} [Π j, has_mul (Ms j)] [Π j, has_mul (Ns j)] (es : ∀ j, Ms j ≃* Ns j) : (Pi_congr_right es).symm = (Pi_congr_right $ λ i, (es i).symm) := rfl @[simp] lemma Pi_congr_right_trans {η : Type*} {Ms Ns Ps : η → Type*} [Π j, has_mul (Ms j)] [Π j, has_mul (Ns j)] [Π j, has_mul (Ps j)] (es : ∀ j, Ms j ≃* Ns j) (fs : ∀ j, Ns j ≃* Ps j) : (Pi_congr_right es).trans (Pi_congr_right fs) = (Pi_congr_right $ λ i, (es i).trans (fs i)) := rfl /-- A family indexed by a nonempty subsingleton type is equivalent to the element at the single index. -/ @[to_additive add_equiv.Pi_subsingleton "A family indexed by a nonempty subsingleton type is equivalent to the element at the single index.", simps] def Pi_subsingleton {ι : Type*} (M : ι → Type*) [Π j, has_mul (M j)] [subsingleton ι] (i : ι) : (Π j, M j) ≃* M i := { map_mul' := λ f1 f2, pi.mul_apply _ _ _, ..equiv.Pi_subsingleton M i } /-! # Groups -/ /-- A multiplicative equivalence of groups preserves inversion. -/ @[to_additive "An additive equivalence of additive groups preserves negation."] protected lemma map_inv [group G] [division_monoid H] (h : G ≃* H) (x : G) : h x⁻¹ = (h x)⁻¹ := map_inv h x /-- A multiplicative equivalence of groups preserves division. -/ @[to_additive "An additive equivalence of additive groups preserves subtractions."] protected lemma map_div [group G] [division_monoid H] (h : G ≃* H) (x y : G) : h (x / y) = h x / h y := map_div h x y end mul_equiv /-- Given a pair of monoid homomorphisms `f`, `g` such that `g.comp f = id` and `f.comp g = id`, returns an multiplicative equivalence with `to_fun = f` and `inv_fun = g`. This constructor is useful if the underlying type(s) have specialized `ext` lemmas for monoid homomorphisms. -/ @[to_additive /-"Given a pair of additive monoid homomorphisms `f`, `g` such that `g.comp f = id` and `f.comp g = id`, returns an additive equivalence with `to_fun = f` and `inv_fun = g`. This constructor is useful if the underlying type(s) have specialized `ext` lemmas for additive monoid homomorphisms."-/, simps {fully_applied := ff}] def monoid_hom.to_mul_equiv [mul_one_class M] [mul_one_class N] (f : M →* N) (g : N →* M) (h₁ : g.comp f = monoid_hom.id _) (h₂ : f.comp g = monoid_hom.id _) : M ≃* N := { to_fun := f, inv_fun := g, left_inv := monoid_hom.congr_fun h₁, right_inv := monoid_hom.congr_fun h₂, map_mul' := f.map_mul } /-- A group is isomorphic to its group of units. -/ @[to_additive "An additive group is isomorphic to its group of additive units"] def to_units [group G] : G ≃* Gˣ := { to_fun := λ x, ⟨x, x⁻¹, mul_inv_self _, inv_mul_self _⟩, inv_fun := coe, left_inv := λ x, rfl, right_inv := λ u, units.ext rfl, map_mul' := λ x y, units.ext rfl } @[simp, to_additive] lemma coe_to_units [group G] (g : G) : (to_units g : G) = g := rfl @[to_additive] protected lemma group.is_unit {G} [group G] (x : G) : is_unit x := (to_units x).is_unit namespace units variables [monoid M] [monoid N] [monoid P] /-- A multiplicative equivalence of monoids defines a multiplicative equivalence of their groups of units. -/ def map_equiv (h : M ≃* N) : Mˣ ≃* Nˣ := { inv_fun := map h.symm.to_monoid_hom, left_inv := λ u, ext $ h.left_inv u, right_inv := λ u, ext $ h.right_inv u, .. map h.to_monoid_hom } /-- Left multiplication by a unit of a monoid is a permutation of the underlying type. -/ @[to_additive "Left addition of an additive unit is a permutation of the underlying type.", simps apply {fully_applied := ff}] def mul_left (u : Mˣ) : equiv.perm M := { to_fun := λx, u * x, inv_fun := λx, ↑u⁻¹ * x, left_inv := u.inv_mul_cancel_left, right_inv := u.mul_inv_cancel_left } @[simp, to_additive] lemma mul_left_symm (u : Mˣ) : u.mul_left.symm = u⁻¹.mul_left := equiv.ext $ λ x, rfl @[to_additive] lemma mul_left_bijective (a : Mˣ) : function.bijective ((*) a : M → M) := (mul_left a).bijective /-- Right multiplication by a unit of a monoid is a permutation of the underlying type. -/ @[to_additive "Right addition of an additive unit is a permutation of the underlying type.", simps apply {fully_applied := ff}] def mul_right (u : Mˣ) : equiv.perm M := { to_fun := λx, x * u, inv_fun := λx, x * ↑u⁻¹, left_inv := λ x, mul_inv_cancel_right x u, right_inv := λ x, inv_mul_cancel_right x u } @[simp, to_additive] lemma mul_right_symm (u : Mˣ) : u.mul_right.symm = u⁻¹.mul_right := equiv.ext $ λ x, rfl @[to_additive] lemma mul_right_bijective (a : Mˣ) : function.bijective ((* a) : M → M) := (mul_right a).bijective end units namespace equiv section has_involutive_neg variables (G) [has_involutive_inv G] /-- Inversion on a `group` or `group_with_zero` is a permutation of the underlying type. -/ @[to_additive "Negation on an `add_group` is a permutation of the underlying type.", simps apply {fully_applied := ff}] protected def inv : perm G := inv_involutive.to_perm _ variable {G} @[simp, to_additive] lemma inv_symm : (equiv.inv G).symm = equiv.inv G := rfl end has_involutive_neg section group variables [group G] /-- Left multiplication in a `group` is a permutation of the underlying type. -/ @[to_additive "Left addition in an `add_group` is a permutation of the underlying type."] protected def mul_left (a : G) : perm G := (to_units a).mul_left @[simp, to_additive] lemma coe_mul_left (a : G) : ⇑(equiv.mul_left a) = (*) a := rfl /-- Extra simp lemma that `dsimp` can use. `simp` will never use this. -/ @[simp, nolint simp_nf, to_additive "Extra simp lemma that `dsimp` can use. `simp` will never use this."] lemma mul_left_symm_apply (a : G) : ((equiv.mul_left a).symm : G → G) = (*) a⁻¹ := rfl @[simp, to_additive] lemma mul_left_symm (a : G) : (equiv.mul_left a).symm = equiv.mul_left a⁻¹ := ext $ λ x, rfl @[to_additive] lemma _root_.group.mul_left_bijective (a : G) : function.bijective ((*) a) := (equiv.mul_left a).bijective /-- Right multiplication in a `group` is a permutation of the underlying type. -/ @[to_additive "Right addition in an `add_group` is a permutation of the underlying type."] protected def mul_right (a : G) : perm G := (to_units a).mul_right @[simp, to_additive] lemma coe_mul_right (a : G) : ⇑(equiv.mul_right a) = λ x, x * a := rfl @[simp, to_additive] lemma mul_right_symm (a : G) : (equiv.mul_right a).symm = equiv.mul_right a⁻¹ := ext $ λ x, rfl /-- Extra simp lemma that `dsimp` can use. `simp` will never use this. -/ @[simp, nolint simp_nf, to_additive "Extra simp lemma that `dsimp` can use. `simp` will never use this."] lemma mul_right_symm_apply (a : G) : ((equiv.mul_right a).symm : G → G) = λ x, x * a⁻¹ := rfl @[to_additive] lemma _root_.group.mul_right_bijective (a : G) : function.bijective (* a) := (equiv.mul_right a).bijective /-- A version of `equiv.mul_left a b⁻¹` that is defeq to `a / b`. -/ @[to_additive /-" A version of `equiv.add_left a (-b)` that is defeq to `a - b`. "-/, simps] protected def div_left (a : G) : G ≃ G := { to_fun := λ b, a / b, inv_fun := λ b, b⁻¹ * a, left_inv := λ b, by simp [div_eq_mul_inv], right_inv := λ b, by simp [div_eq_mul_inv] } @[to_additive] lemma div_left_eq_inv_trans_mul_left (a : G) : equiv.div_left a = (equiv.inv G).trans (equiv.mul_left a) := ext $ λ _, div_eq_mul_inv _ _ /-- A version of `equiv.mul_right a⁻¹ b` that is defeq to `b / a`. -/ @[to_additive /-" A version of `equiv.add_right (-a) b` that is defeq to `b - a`. "-/, simps] protected def div_right (a : G) : G ≃ G := { to_fun := λ b, b / a, inv_fun := λ b, b * a, left_inv := λ b, by simp [div_eq_mul_inv], right_inv := λ b, by simp [div_eq_mul_inv] } @[to_additive] lemma div_right_eq_mul_right_inv (a : G) : equiv.div_right a = equiv.mul_right a⁻¹ := ext $ λ _, div_eq_mul_inv _ _ end group section group_with_zero variables [group_with_zero G] /-- Left multiplication by a nonzero element in a `group_with_zero` is a permutation of the underlying type. -/ @[simps {fully_applied := ff}] protected def mul_left₀ (a : G) (ha : a ≠ 0) : perm G := (units.mk0 a ha).mul_left lemma _root_.mul_left_bijective₀ (a : G) (ha : a ≠ 0) : function.bijective ((*) a : G → G) := (equiv.mul_left₀ a ha).bijective /-- Right multiplication by a nonzero element in a `group_with_zero` is a permutation of the underlying type. -/ @[simps {fully_applied := ff}] protected def mul_right₀ (a : G) (ha : a ≠ 0) : perm G := (units.mk0 a ha).mul_right lemma _root_.mul_right_bijective₀ (a : G) (ha : a ≠ 0) : function.bijective ((* a) : G → G) := (equiv.mul_right₀ a ha).bijective end group_with_zero end equiv /-- In a `division_comm_monoid`, `equiv.inv` is a `mul_equiv`. There is a variant of this `mul_equiv.inv' G : G ≃* Gᵐᵒᵖ` for the non-commutative case. -/ @[to_additive "When the `add_group` is commutative, `equiv.neg` is an `add_equiv`.", simps apply] def mul_equiv.inv (G : Type*) [division_comm_monoid G] : G ≃* G := { to_fun := has_inv.inv, inv_fun := has_inv.inv, map_mul' := mul_inv, ..equiv.inv G } @[simp] lemma mul_equiv.inv_symm (G : Type*) [division_comm_monoid G] : (mul_equiv.inv G).symm = mul_equiv.inv G := rfl section type_tags /-- Reinterpret `G ≃+ H` as `multiplicative G ≃* multiplicative H`. -/ def add_equiv.to_multiplicative [add_zero_class G] [add_zero_class H] : (G ≃+ H) ≃ (multiplicative G ≃* multiplicative H) := { to_fun := λ f, ⟨f.to_add_monoid_hom.to_multiplicative, f.symm.to_add_monoid_hom.to_multiplicative, f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_monoid_hom, f.symm.to_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `G ≃* H` as `additive G ≃+ additive H`. -/ def mul_equiv.to_additive [mul_one_class G] [mul_one_class H] : (G ≃* H) ≃ (additive G ≃+ additive H) := { to_fun := λ f, ⟨f.to_monoid_hom.to_additive, f.symm.to_monoid_hom.to_additive, f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_add_monoid_hom, f.symm.to_add_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `additive G ≃+ H` as `G ≃* multiplicative H`. -/ def add_equiv.to_multiplicative' [mul_one_class G] [add_zero_class H] : (additive G ≃+ H) ≃ (G ≃* multiplicative H) := { to_fun := λ f, ⟨f.to_add_monoid_hom.to_multiplicative', f.symm.to_add_monoid_hom.to_multiplicative'', f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_monoid_hom, f.symm.to_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `G ≃* multiplicative H` as `additive G ≃+ H` as. -/ def mul_equiv.to_additive' [mul_one_class G] [add_zero_class H] : (G ≃* multiplicative H) ≃ (additive G ≃+ H) := add_equiv.to_multiplicative'.symm /-- Reinterpret `G ≃+ additive H` as `multiplicative G ≃* H`. -/ def add_equiv.to_multiplicative'' [add_zero_class G] [mul_one_class H] : (G ≃+ additive H) ≃ (multiplicative G ≃* H) := { to_fun := λ f, ⟨f.to_add_monoid_hom.to_multiplicative'', f.symm.to_add_monoid_hom.to_multiplicative', f.3, f.4, f.5⟩, inv_fun := λ f, ⟨f.to_monoid_hom, f.symm.to_monoid_hom, f.3, f.4, f.5⟩, left_inv := λ x, by { ext, refl, }, right_inv := λ x, by { ext, refl, }, } /-- Reinterpret `multiplicative G ≃* H` as `G ≃+ additive H` as. -/ def mul_equiv.to_additive'' [add_zero_class G] [mul_one_class H] : (multiplicative G ≃* H) ≃ (G ≃+ additive H) := add_equiv.to_multiplicative''.symm end type_tags section variables (G) (H) /-- `additive (multiplicative G)` is just `G`. -/ def add_equiv.additive_multiplicative [add_zero_class G] : additive (multiplicative G) ≃+ G := mul_equiv.to_additive'' (mul_equiv.refl (multiplicative G)) /-- `multiplicative (additive H)` is just `H`. -/ def mul_equiv.multiplicative_additive [mul_one_class H] : multiplicative (additive H) ≃* H := add_equiv.to_multiplicative'' (add_equiv.refl (additive H)) end