/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.homology.homology import algebra.homology.single import category_theory.preadditive.additive_functor /-! # Homology is an additive functor When `V` is preadditive, `homological_complex V c` is also preadditive, and `homology_functor` is additive. TODO: similarly for `R`-linear. -/ universes v u open_locale classical noncomputable theory open category_theory category_theory.category category_theory.limits homological_complex variables {ι : Type*} variables {V : Type u} [category.{v} V] [preadditive V] variables {c : complex_shape ι} {C D E : homological_complex V c} variables (f g : C ⟶ D) (h k : D ⟶ E) (i : ι) namespace homological_complex instance : has_zero (C ⟶ D) := ⟨{ f := λ i, 0 }⟩ instance : has_add (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i + g.f i, }⟩ instance : has_neg (C ⟶ D) := ⟨λ f, { f := λ i, -(f.f i) }⟩ instance : has_sub (C ⟶ D) := ⟨λ f g, { f := λ i, f.f i - g.f i, }⟩ instance has_nat_scalar : has_smul ℕ (C ⟶ D) := ⟨λ n f, { f := λ i, n • f.f i, comm' := λ i j h, by simp [preadditive.nsmul_comp, preadditive.comp_nsmul] }⟩ instance has_int_scalar : has_smul ℤ (C ⟶ D) := ⟨λ n f, { f := λ i, n • f.f i, comm' := λ i j h, by simp [preadditive.zsmul_comp, preadditive.comp_zsmul] }⟩ @[simp] lemma zero_f_apply (i : ι) : (0 : C ⟶ D).f i = 0 := rfl @[simp] lemma add_f_apply (f g : C ⟶ D) (i : ι) : (f + g).f i = f.f i + g.f i := rfl @[simp] lemma neg_f_apply (f : C ⟶ D) (i : ι) : (-f).f i = -(f.f i) := rfl @[simp] lemma sub_f_apply (f g : C ⟶ D) (i : ι) : (f - g).f i = f.f i - g.f i := rfl @[simp] lemma nsmul_f_apply (n : ℕ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl @[simp] lemma zsmul_f_apply (n : ℤ) (f : C ⟶ D) (i : ι) : (n • f).f i = n • f.f i := rfl instance : add_comm_group (C ⟶ D) := function.injective.add_comm_group hom.f homological_complex.hom_f_injective (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) (by tidy) instance : preadditive (homological_complex V c) := {} /-- The `i`-th component of a chain map, as an additive map from chain maps to morphisms. -/ @[simps] def hom.f_add_monoid_hom {C₁ C₂ : homological_complex V c} (i : ι) : (C₁ ⟶ C₂) →+ (C₁.X i ⟶ C₂.X i) := add_monoid_hom.mk' (λ f, hom.f f i) (λ _ _, rfl) end homological_complex namespace homological_complex instance eval_additive (i : ι) : (eval V c i).additive := {} instance cycles_additive [has_equalizers V] : (cycles_functor V c i).additive := {} variables [has_images V] [has_image_maps V] instance boundaries_additive : (boundaries_functor V c i).additive := {} variables [has_equalizers V] [has_cokernels V] instance homology_additive : (homology_functor V c i).additive := { map_add' := λ C D f g, begin dsimp [homology_functor], ext, simp only [homology.π_map, preadditive.comp_add, ←preadditive.add_comp], congr, ext, simp, end } end homological_complex namespace category_theory variables {W : Type*} [category W] [preadditive W] /-- An additive functor induces a functor between homological complexes. This is sometimes called the "prolongation". -/ @[simps] def functor.map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) : homological_complex V c ⥤ homological_complex W c := { obj := λ C, { X := λ i, F.obj (C.X i), d := λ i j, F.map (C.d i j), shape' := λ i j w, by rw [C.shape _ _ w, F.map_zero], d_comp_d' := λ i j k _ _, by rw [←F.map_comp, C.d_comp_d, F.map_zero], }, map := λ C D f, { f := λ i, F.map (f.f i), comm' := λ i j h, by { dsimp, rw [←F.map_comp, ←F.map_comp, f.comm], }, }, }. instance functor.map_homogical_complex_additive (F : V ⥤ W) [F.additive] (c : complex_shape ι) : (F.map_homological_complex c).additive := {} /-- A natural transformation between functors induces a natural transformation between those functors applied to homological complexes. -/ @[simps] def nat_trans.map_homological_complex {F G : V ⥤ W} [F.additive] [G.additive] (α : F ⟶ G) (c : complex_shape ι) : F.map_homological_complex c ⟶ G.map_homological_complex c := { app := λ C, { f := λ i, α.app _, }, } @[simp] lemma nat_trans.map_homological_complex_id (c : complex_shape ι) (F : V ⥤ W) [F.additive] : nat_trans.map_homological_complex (𝟙 F) c = 𝟙 (F.map_homological_complex c) := by tidy @[simp] lemma nat_trans.map_homological_complex_comp (c : complex_shape ι) {F G H : V ⥤ W} [F.additive] [G.additive] [H.additive] (α : F ⟶ G) (β : G ⟶ H): nat_trans.map_homological_complex (α ≫ β) c = nat_trans.map_homological_complex α c ≫ nat_trans.map_homological_complex β c := by tidy @[simp, reassoc] lemma nat_trans.map_homological_complex_naturality {c : complex_shape ι} {F G : V ⥤ W} [F.additive] [G.additive] (α : F ⟶ G) {C D : homological_complex V c} (f : C ⟶ D) : (F.map_homological_complex c).map f ≫ (nat_trans.map_homological_complex α c).app D = (nat_trans.map_homological_complex α c).app C ≫ (G.map_homological_complex c).map f := by tidy end category_theory namespace chain_complex variables {W : Type*} [category W] [preadditive W] variables {α : Type*} [add_right_cancel_semigroup α] [has_one α] [decidable_eq α] lemma map_chain_complex_of (F : V ⥤ W) [F.additive] (X : α → V) (d : Π n, X (n+1) ⟶ X n) (sq : ∀ n, d (n+1) ≫ d n = 0) : (F.map_homological_complex _).obj (chain_complex.of X d sq) = chain_complex.of (λ n, F.obj (X n)) (λ n, F.map (d n)) (λ n, by rw [ ← F.map_comp, sq n, functor.map_zero]) := begin refine homological_complex.ext rfl _, rintro i j (rfl : j + 1 = i), simp only [category_theory.functor.map_homological_complex_obj_d, of_d, eq_to_hom_refl, comp_id, id_comp], end end chain_complex variables [has_zero_object V] {W : Type*} [category W] [preadditive W] [has_zero_object W] namespace homological_complex local attribute [simp] eq_to_hom_map /-- Turning an object into a complex supported at `j` then applying a functor is the same as applying the functor then forming the complex. -/ def single_map_homological_complex (F : V ⥤ W) [F.additive] (c : complex_shape ι) (j : ι): single V c j ⋙ F.map_homological_complex _ ≅ F ⋙ single W c j := nat_iso.of_components (λ X, { hom := { f := λ i, if h : i = j then eq_to_hom (by simp [h]) else 0, }, inv := { f := λ i, if h : i = j then eq_to_hom (by simp [h]) else 0, }, hom_inv_id' := begin ext i, dsimp, split_ifs with h, { simp [h] }, { rw [zero_comp, if_neg h], exact (zero_of_source_iso_zero _ F.map_zero_object).symm, }, end, inv_hom_id' := begin ext i, dsimp, split_ifs with h, { simp [h] }, { rw [zero_comp, if_neg h], simp, }, end, }) (λ X Y f, begin ext i, dsimp, split_ifs with h; simp [h], end). variables (F : V ⥤ W) [functor.additive F] (c) @[simp] lemma single_map_homological_complex_hom_app_self (j : ι) (X : V) : ((single_map_homological_complex F c j).hom.app X).f j = eq_to_hom (by simp) := by simp [single_map_homological_complex] @[simp] lemma single_map_homological_complex_hom_app_ne {i j : ι} (h : i ≠ j) (X : V) : ((single_map_homological_complex F c j).hom.app X).f i = 0 := by simp [single_map_homological_complex, h] @[simp] lemma single_map_homological_complex_inv_app_self (j : ι) (X : V) : ((single_map_homological_complex F c j).inv.app X).f j = eq_to_hom (by simp) := by simp [single_map_homological_complex] @[simp] lemma single_map_homological_complex_inv_app_ne {i j : ι} (h : i ≠ j) (X : V): ((single_map_homological_complex F c j).inv.app X).f i = 0 := by simp [single_map_homological_complex, h] end homological_complex namespace chain_complex /-- Turning an object into a chain complex supported at zero then applying a functor is the same as applying the functor then forming the complex. -/ def single₀_map_homological_complex (F : V ⥤ W) [F.additive] : single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W := nat_iso.of_components (λ X, { hom := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.hom end, }, inv := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.inv end, }, hom_inv_id' := begin ext (_|i), { unfold_aux, simp, }, { unfold_aux, dsimp, simp only [comp_f, id_f, zero_comp], exact (zero_of_source_iso_zero _ F.map_zero_object).symm, } end, inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, }) (λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }). @[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_hom_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl @[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_inv_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl end chain_complex namespace cochain_complex /-- Turning an object into a cochain complex supported at zero then applying a functor is the same as applying the functor then forming the cochain complex. -/ def single₀_map_homological_complex (F : V ⥤ W) [F.additive] : single₀ V ⋙ F.map_homological_complex _ ≅ F ⋙ single₀ W := nat_iso.of_components (λ X, { hom := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.hom end, }, inv := { f := λ i, match i with | 0 := 𝟙 _ | (i+1) := F.map_zero_object.inv end, }, hom_inv_id' := begin ext (_|i), { unfold_aux, simp, }, { unfold_aux, dsimp, simp only [comp_f, id_f, zero_comp], exact (zero_of_source_iso_zero _ F.map_zero_object).symm, } end, inv_hom_id' := by { ext (_|i); { unfold_aux, dsimp, simp, }, }, }) (λ X Y f, by { ext (_|i); { unfold_aux, dsimp, simp, }, }). @[simp] lemma single₀_map_homological_complex_hom_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).hom.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_hom_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).hom.app X).f (n+1) = 0 := rfl @[simp] lemma single₀_map_homological_complex_inv_app_zero (F : V ⥤ W) [F.additive] (X : V) : ((single₀_map_homological_complex F).inv.app X).f 0 = 𝟙 _ := rfl @[simp] lemma single₀_map_homological_complex_inv_app_succ (F : V ⥤ W) [F.additive] (X : V) (n : ℕ) : ((single₀_map_homological_complex F).inv.app X).f (n+1) = 0 := rfl end cochain_complex