/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.homology.single import tactic.linarith /-! # Augmentation and truncation of `ℕ`-indexed (co)chain complexes. -/ noncomputable theory open category_theory open category_theory.limits open homological_complex universes v u variables {V : Type u} [category.{v} V] namespace chain_complex /-- The truncation of a `ℕ`-indexed chain complex, deleting the object at `0` and shifting everything else down. -/ @[simps] def truncate [has_zero_morphisms V] : chain_complex V ℕ ⥤ chain_complex V ℕ := { obj := λ C, { X := λ i, C.X (i+1), d := λ i j, C.d (i+1) (j+1), shape' := λ i j w, by { apply C.shape, simpa }, }, map := λ C D f, { f := λ i, f.f (i+1), }, } /-- There is a canonical chain map from the truncation of a chain map `C` to the "single object" chain complex consisting of the truncated object `C.X 0` in degree 0. The components of this chain map are `C.d 1 0` in degree 0, and zero otherwise. -/ def truncate_to [has_zero_object V] [has_zero_morphisms V] (C : chain_complex V ℕ) : truncate.obj C ⟶ (single₀ V).obj (C.X 0) := (to_single₀_equiv (truncate.obj C) (C.X 0)).symm ⟨C.d 1 0, by tidy⟩ -- PROJECT when `V` is abelian (but not generally?) -- `[∀ n, exact (C.d (n+2) (n+1)) (C.d (n+1) n)] [epi (C.d 1 0)]` iff `quasi_iso (C.truncate_to)` variables [has_zero_morphisms V] /-- We can "augment" a chain complex by inserting an arbitrary object in degree zero (shifting everything else up), along with a suitable differential. -/ def augment (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : chain_complex V ℕ := { X := λ i, match i with | 0 := X | (i+1) := C.X i end, d := λ i j, match i, j with | 1, 0 := f | (i+1), (j+1) := C.d i j | _, _ := 0 end, shape' := λ i j s, begin simp at s, rcases i with _|_|i; cases j; unfold_aux; try { simp }, { simpa using s, }, { rw [C.shape], simpa [← ne.def, nat.succ_ne_succ] using s }, end, d_comp_d' := λ i j k hij hjk, begin rcases i with _|_|i; rcases j with _|_|j; cases k; unfold_aux; try { simp }, cases i, { exact w, }, { rw [C.shape, zero_comp], simpa using i.succ_succ_ne_one.symm }, end, } @[simp] lemma augment_X_zero (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : (augment C f w).X 0 = X := rfl @[simp] lemma augment_X_succ (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i : ℕ) : (augment C f w).X (i+1) = C.X i := rfl @[simp] lemma augment_d_one_zero (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : (augment C f w).d 1 0 = f := rfl @[simp] lemma augment_d_succ_succ (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i j : ℕ) : (augment C f w).d (i+1) (j+1) = C.d i j := by { dsimp [augment], rcases i with _|i, refl, refl, } /-- Truncating an augmented chain complex is isomorphic (with components the identity) to the original complex. -/ def truncate_augment (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) : truncate.obj (augment C f w) ≅ C := { hom := { f := λ i, 𝟙 _, }, inv := { f := λ i, by { exact 𝟙 _, }, comm' := λ i j, by { cases j; { dsimp, simp, }, }, }, hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. @[simp] lemma truncate_augment_hom_f (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i : ℕ) : (truncate_augment C f w).hom.f i = 𝟙 (C.X i) := rfl @[simp] lemma truncate_augment_inv_f (C : chain_complex V ℕ) {X : V} (f : C.X 0 ⟶ X) (w : C.d 1 0 ≫ f = 0) (i : ℕ) : (truncate_augment C f w).inv.f i = 𝟙 ((truncate.obj (augment C f w)).X i) := rfl @[simp] lemma chain_complex_d_succ_succ_zero (C : chain_complex V ℕ) (i : ℕ) : C.d (i+2) 0 = 0 := by { rw C.shape, simpa using i.succ_succ_ne_one.symm } /-- Augmenting a truncated complex with the original object and morphism is isomorphic (with components the identity) to the original complex. -/ def augment_truncate (C : chain_complex V ℕ) : augment (truncate.obj C) (C.d 1 0) (C.d_comp_d _ _ _) ≅ C := { hom := { f := λ i, by { cases i; exact 𝟙 _, }, comm' := λ i j, by { rcases i with _|_|i; cases j; { dsimp, simp, }, }, }, inv := { f := λ i, by { cases i; exact 𝟙 _, }, comm' := λ i j, by { rcases i with _|_|i; cases j; { dsimp, simp, }, }, }, hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. @[simp] lemma augment_truncate_hom_f_zero (C : chain_complex V ℕ) : (augment_truncate C).hom.f 0 = 𝟙 (C.X 0) := rfl @[simp] lemma augment_truncate_hom_f_succ (C : chain_complex V ℕ) (i : ℕ) : (augment_truncate C).hom.f (i+1) = 𝟙 (C.X (i+1)) := rfl @[simp] lemma augment_truncate_inv_f_zero (C : chain_complex V ℕ) : (augment_truncate C).inv.f 0 = 𝟙 (C.X 0) := rfl @[simp] lemma augment_truncate_inv_f_succ (C : chain_complex V ℕ) (i : ℕ) : (augment_truncate C).inv.f (i+1) = 𝟙 (C.X (i+1)) := rfl /-- A chain map from a chain complex to a single object chain complex in degree zero can be reinterpreted as a chain complex. Ths is the inverse construction of `truncate_to`. -/ def to_single₀_as_complex [has_zero_object V] (C : chain_complex V ℕ) (X : V) (f : C ⟶ (single₀ V).obj X) : chain_complex V ℕ := let ⟨f, w⟩ := to_single₀_equiv C X f in augment C f w end chain_complex namespace cochain_complex /-- The truncation of a `ℕ`-indexed cochain complex, deleting the object at `0` and shifting everything else down. -/ @[simps] def truncate [has_zero_morphisms V] : cochain_complex V ℕ ⥤ cochain_complex V ℕ := { obj := λ C, { X := λ i, C.X (i+1), d := λ i j, C.d (i+1) (j+1), shape' := λ i j w, by { apply C.shape, simpa }, }, map := λ C D f, { f := λ i, f.f (i+1), }, } /-- There is a canonical chain map from the truncation of a cochain complex `C` to the "single object" cochain complex consisting of the truncated object `C.X 0` in degree 0. The components of this chain map are `C.d 0 1` in degree 0, and zero otherwise. -/ def to_truncate [has_zero_object V] [has_zero_morphisms V] (C : cochain_complex V ℕ) : (single₀ V).obj (C.X 0) ⟶ truncate.obj C := (from_single₀_equiv (truncate.obj C) (C.X 0)).symm ⟨C.d 0 1, by tidy⟩ variables [has_zero_morphisms V] /-- We can "augment" a cochain complex by inserting an arbitrary object in degree zero (shifting everything else up), along with a suitable differential. -/ def augment (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : cochain_complex V ℕ := { X := λ i, match i with | 0 := X | (i+1) := C.X i end, d := λ i j, match i, j with | 0, 1 := f | (i+1), (j+1) := C.d i j | _, _ := 0 end, shape' := λ i j s, begin simp at s, rcases j with _|_|j; cases i; unfold_aux; try { simp }, { simpa using s, }, { rw [C.shape], simp only [complex_shape.up_rel], contrapose! s, rw ←s }, end, d_comp_d' := λ i j k hij hjk, begin rcases k with _|_|k; rcases j with _|_|j; cases i; unfold_aux; try { simp }, cases k, { exact w, }, { rw [C.shape, comp_zero], simp only [nat.nat_zero_eq_zero, complex_shape.up_rel, zero_add], exact (nat.one_lt_succ_succ _).ne }, end, } @[simp] lemma augment_X_zero (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : (augment C f w).X 0 = X := rfl @[simp] lemma augment_X_succ (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i : ℕ) : (augment C f w).X (i+1) = C.X i := rfl @[simp] lemma augment_d_zero_one (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : (augment C f w).d 0 1 = f := rfl @[simp] lemma augment_d_succ_succ (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i j : ℕ) : (augment C f w).d (i+1) (j+1) = C.d i j := rfl /-- Truncating an augmented cochain complex is isomorphic (with components the identity) to the original complex. -/ def truncate_augment (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) : truncate.obj (augment C f w) ≅ C := { hom := { f := λ i, 𝟙 _, }, inv := { f := λ i, by { exact 𝟙 _, }, comm' := λ i j, by { cases j; { dsimp, simp, }, }, }, hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. @[simp] lemma truncate_augment_hom_f (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i : ℕ) : (truncate_augment C f w).hom.f i = 𝟙 (C.X i) := rfl @[simp] lemma truncate_augment_inv_f (C : cochain_complex V ℕ) {X : V} (f : X ⟶ C.X 0) (w : f ≫ C.d 0 1 = 0) (i : ℕ) : (truncate_augment C f w).inv.f i = 𝟙 ((truncate.obj (augment C f w)).X i) := rfl @[simp] lemma cochain_complex_d_succ_succ_zero (C : cochain_complex V ℕ) (i : ℕ) : C.d 0 (i+2) = 0 := by { rw C.shape, simp only [complex_shape.up_rel, zero_add], exact (nat.one_lt_succ_succ _).ne } /-- Augmenting a truncated complex with the original object and morphism is isomorphic (with components the identity) to the original complex. -/ def augment_truncate (C : cochain_complex V ℕ) : augment (truncate.obj C) (C.d 0 1) (C.d_comp_d _ _ _) ≅ C := { hom := { f := λ i, by { cases i; exact 𝟙 _, }, comm' := λ i j, by { rcases j with _|_|j; cases i; { dsimp, simp, }, }, }, inv := { f := λ i, by { cases i; exact 𝟙 _, }, comm' := λ i j, by { rcases j with _|_|j; cases i; { dsimp, simp, }, }, }, hom_inv_id' := by { ext i, cases i; { dsimp, simp, }, }, inv_hom_id' := by { ext i, cases i; { dsimp, simp, }, }, }. @[simp] lemma augment_truncate_hom_f_zero (C : cochain_complex V ℕ) : (augment_truncate C).hom.f 0 = 𝟙 (C.X 0) := rfl @[simp] lemma augment_truncate_hom_f_succ (C : cochain_complex V ℕ) (i : ℕ) : (augment_truncate C).hom.f (i+1) = 𝟙 (C.X (i+1)) := rfl @[simp] lemma augment_truncate_inv_f_zero (C : cochain_complex V ℕ) : (augment_truncate C).inv.f 0 = 𝟙 (C.X 0) := rfl @[simp] lemma augment_truncate_inv_f_succ (C : cochain_complex V ℕ) (i : ℕ) : (augment_truncate C).inv.f (i+1) = 𝟙 (C.X (i+1)) := rfl /-- A chain map from a single object cochain complex in degree zero to a cochain complex can be reinterpreted as a cochain complex. Ths is the inverse construction of `to_truncate`. -/ def from_single₀_as_complex [has_zero_object V] (C : cochain_complex V ℕ) (X : V) (f : (single₀ V).obj X ⟶ C) : cochain_complex V ℕ := let ⟨f, w⟩ := from_single₀_equiv C X f in augment C f w end cochain_complex