/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.homology.homological_complex /-! # Flip a complex of complexes For now we don't have double complexes as a distinct thing, but we can model them as complexes of complexes. Here we show how to flip a complex of complexes over the diagonal, exchanging the horizontal and vertical directions. -/ universes v u open category_theory category_theory.limits namespace homological_complex variables {V : Type u} [category.{v} V] [has_zero_morphisms V] variables {ι : Type*} {c : complex_shape ι} {ι' : Type*} {c' : complex_shape ι'} /-- Flip a complex of complexes over the diagonal, exchanging the horizontal and vertical directions. -/ @[simps] def flip_obj (C : homological_complex (homological_complex V c) c') : homological_complex (homological_complex V c') c := { X := λ i, { X := λ j, (C.X j).X i, d := λ j j', (C.d j j').f i, shape' := λ j j' w, by { rw C.shape j j' w, simp, }, d_comp_d' := λ j₁ j₂ j₃ _ _, congr_hom (C.d_comp_d j₁ j₂ j₃) i, }, d := λ i i', { f := λ j, (C.X j).d i i', comm' := λ j j' h, ((C.d j j').comm i i').symm, }, shape' := λ i i' w, by { ext j, exact (C.X j).shape i i' w, } }. variables V c c' /-- Flipping a complex of complexes over the diagonal, as a functor. -/ @[simps] def flip : homological_complex (homological_complex V c) c' ⥤ homological_complex (homological_complex V c') c := { obj := λ C, flip_obj C, map := λ C D f, { f := λ i, { f := λ j, (f.f j).f i, comm' := λ j j' h, congr_hom (f.comm j j') i, }, }, }. /-- Auxiliary definition for `homological_complex.flip_equivalence` .-/ @[simps] def flip_equivalence_unit_iso : 𝟭 (homological_complex (homological_complex V c) c') ≅ flip V c c' ⋙ flip V c' c := nat_iso.of_components (λ C, { hom := { f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, }, inv := { f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, } }) (λ X Y f, by { ext, dsimp, simp only [category.id_comp, category.comp_id], }) /-- Auxiliary definition for `homological_complex.flip_equivalence` .-/ @[simps] def flip_equivalence_counit_iso : flip V c' c ⋙ flip V c c' ≅ 𝟭 (homological_complex (homological_complex V c') c) := nat_iso.of_components (λ C, { hom := { f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, }, inv := { f := λ i, { f := λ j, 𝟙 ((C.X i).X j), }, comm' := λ i j h, by { ext, dsimp, simp only [category.id_comp, category.comp_id] }, } }) (λ X Y f, by { ext, dsimp, simp only [category.id_comp, category.comp_id], }) /-- Flipping a complex of complexes over the diagonal, as an equivalence of categories. -/ @[simps] def flip_equivalence : homological_complex (homological_complex V c) c' ≌ homological_complex (homological_complex V c') c := { functor := flip V c c', inverse := flip V c' c, unit_iso := flip_equivalence_unit_iso V c c', counit_iso := flip_equivalence_counit_iso V c c', } end homological_complex