/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.homology.image_to_kernel import algebra.homology.homological_complex import category_theory.graded_object /-! # The homology of a complex Given `C : homological_complex V c`, we have `C.cycles i` and `C.boundaries i`, both defined as subobjects of `C.X i`. We show these are functorial with respect to chain maps, as `C.cycles_map f i` and `C.boundaries_map f i`. As a consequence we construct `homology_functor i : homological_complex V c ⥤ V`, computing the `i`-th homology. -/ universes v u open category_theory category_theory.limits variables {ι : Type*} variables {V : Type u} [category.{v} V] [has_zero_morphisms V] variables {c : complex_shape ι} (C : homological_complex V c) open_locale classical zero_object noncomputable theory namespace homological_complex section cycles variables [has_kernels V] /-- The cycles at index `i`, as a subobject. -/ abbreviation cycles (i : ι) : subobject (C.X i) := kernel_subobject (C.d_from i) lemma cycles_eq_kernel_subobject {i j : ι} (r : c.rel i j) : C.cycles i = kernel_subobject (C.d i j) := C.kernel_from_eq_kernel r /-- The underlying object of `C.cycles i` is isomorphic to `kernel (C.d i j)`, for any `j` such that `rel i j`. -/ def cycles_iso_kernel {i j : ι} (r : c.rel i j) : (C.cycles i : V) ≅ kernel (C.d i j) := subobject.iso_of_eq _ _ (C.cycles_eq_kernel_subobject r) ≪≫ kernel_subobject_iso (C.d i j) lemma cycles_eq_top {i} (h : ¬c.rel i (c.next i)) : C.cycles i = ⊤ := begin rw eq_top_iff, apply le_kernel_subobject, rw [C.d_from_eq_zero h, comp_zero], end end cycles section boundaries variables [has_images V] /-- The boundaries at index `i`, as a subobject. -/ abbreviation boundaries (C : homological_complex V c) (j : ι) : subobject (C.X j) := image_subobject (C.d_to j) lemma boundaries_eq_image_subobject [has_equalizers V] {i j : ι} (r : c.rel i j) : C.boundaries j = image_subobject (C.d i j) := C.image_to_eq_image r /-- The underlying object of `C.boundaries j` is isomorphic to `image (C.d i j)`, for any `i` such that `rel i j`. -/ def boundaries_iso_image [has_equalizers V] {i j : ι} (r : c.rel i j) : (C.boundaries j : V) ≅ image (C.d i j) := subobject.iso_of_eq _ _ (C.boundaries_eq_image_subobject r) ≪≫ image_subobject_iso (C.d i j) lemma boundaries_eq_bot [has_zero_object V] {j} (h : ¬c.rel (c.prev j) j) : C.boundaries j = ⊥ := begin rw eq_bot_iff, refine image_subobject_le _ 0 _, rw [C.d_to_eq_zero h, zero_comp], end end boundaries section variables [has_kernels V] [has_images V] lemma boundaries_le_cycles (C : homological_complex V c) (i : ι) : C.boundaries i ≤ C.cycles i := image_le_kernel _ _ (C.d_to_comp_d_from i) /-- The canonical map from `boundaries i` to `cycles i`. -/ abbreviation boundaries_to_cycles (C : homological_complex V c) (i : ι) : (C.boundaries i : V) ⟶ (C.cycles i : V) := image_to_kernel _ _ (C.d_to_comp_d_from i) /-- Prefer `boundaries_to_cycles`. -/ @[simp] lemma image_to_kernel_as_boundaries_to_cycles (C : homological_complex V c) (i : ι) (h) : (C.boundaries i).of_le (C.cycles i) h = C.boundaries_to_cycles i := rfl variables [has_cokernels V] /-- The homology of a complex at index `i`. -/ abbreviation homology (C : homological_complex V c) (i : ι) : V := homology (C.d_to i) (C.d_from i) (C.d_to_comp_d_from i) end end homological_complex open homological_complex /-! Computing the cycles is functorial. -/ section variables [has_kernels V] variables {C₁ C₂ C₃ : homological_complex V c} (f : C₁ ⟶ C₂) /-- The morphism between cycles induced by a chain map. -/ abbreviation cycles_map (f : C₁ ⟶ C₂) (i : ι) : (C₁.cycles i : V) ⟶ (C₂.cycles i : V) := subobject.factor_thru _ ((C₁.cycles i).arrow ≫ f.f i) (kernel_subobject_factors _ _ (by simp)) @[simp, reassoc, elementwise] lemma cycles_map_arrow (f : C₁ ⟶ C₂) (i : ι) : (cycles_map f i) ≫ (C₂.cycles i).arrow = (C₁.cycles i).arrow ≫ f.f i := by { simp, } @[simp] lemma cycles_map_id (i : ι) : cycles_map (𝟙 C₁) i = 𝟙 _ := by { dunfold cycles_map, simp, } @[simp] lemma cycles_map_comp (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) : cycles_map (f ≫ g) i = cycles_map f i ≫ cycles_map g i := by { dunfold cycles_map, simp [subobject.factor_thru_right], } variables (V c) /-- Cycles as a functor. -/ @[simps] def cycles_functor (i : ι) : homological_complex V c ⥤ V := { obj := λ C, C.cycles i, map := λ C₁ C₂ f, cycles_map f i, } end /-! Computing the boundaries is functorial. -/ section variables [has_images V] [has_image_maps V] variables {C₁ C₂ C₃ : homological_complex V c} (f : C₁ ⟶ C₂) /-- The morphism between boundaries induced by a chain map. -/ abbreviation boundaries_map (f : C₁ ⟶ C₂) (i : ι) : (C₁.boundaries i : V) ⟶ (C₂.boundaries i : V) := image_subobject_map (f.sq_to i) variables (V c) /-- Boundaries as a functor. -/ @[simps] def boundaries_functor (i : ι) : homological_complex V c ⥤ V := { obj := λ C, C.boundaries i, map := λ C₁ C₂ f, image_subobject_map (f.sq_to i), } end section /-! The `boundaries_to_cycles` morphisms are natural. -/ variables [has_equalizers V] [has_images V] [has_image_maps V] variables {C₁ C₂ : homological_complex V c} (f : C₁ ⟶ C₂) @[simp, reassoc] lemma boundaries_to_cycles_naturality (i : ι) : boundaries_map f i ≫ C₂.boundaries_to_cycles i = C₁.boundaries_to_cycles i ≫ cycles_map f i := by { ext, simp, } variables (V c) /-- The natural transformation from the boundaries functor to the cycles functor. -/ @[simps] def boundaries_to_cycles_nat_trans (i : ι) : boundaries_functor V c i ⟶ cycles_functor V c i := { app := λ C, C.boundaries_to_cycles i, naturality' := λ C₁ C₂ f, boundaries_to_cycles_naturality f i, } /-- The `i`-th homology, as a functor to `V`. -/ @[simps] def homology_functor [has_cokernels V] (i : ι) : homological_complex V c ⥤ V := -- It would be nice if we could just write -- `cokernel (boundaries_to_cycles_nat_trans V c i)` -- here, but universe implementation details get in the way... { obj := λ C, C.homology i, map := λ C₁ C₂ f, _root_.homology.map _ _ (f.sq_to i) (f.sq_from i) rfl, map_id' := begin intros, ext1, simp only [homology.π_map, kernel_subobject_map_id, hom.sq_from_id, category.id_comp, category.comp_id] end, map_comp' := begin intros, ext1, simp only [hom.sq_from_comp, kernel_subobject_map_comp, homology.π_map_assoc, homology.π_map, category.assoc] end } /-- The homology functor from `ι`-indexed complexes to `ι`-graded objects in `V`. -/ @[simps] def graded_homology_functor [has_cokernels V] : homological_complex V c ⥤ graded_object ι V := { obj := λ C i, C.homology i, map := λ C C' f i, (homology_functor V c i).map f, map_id' := begin intros, ext, simp only [pi.id_apply, homology.π_map, homology_functor_map, kernel_subobject_map_id, hom.sq_from_id, category.id_comp, category.comp_id] end, map_comp' := begin intros, ext, simp only [hom.sq_from_comp, kernel_subobject_map_comp, homology.π_map_assoc, pi.comp_apply, homology.π_map, homology_functor_map, category.assoc] end } end