/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson -/ import computability.DFA import data.set.functor /-! # Nondeterministic Finite Automata This file contains the definition of a Nondeterministic Finite Automaton (NFA), a state machine which determines whether a string (implemented as a list over an arbitrary alphabet) is in a regular set by evaluating the string over every possible path. We show that DFA's are equivalent to NFA's however the construction from NFA to DFA uses an exponential number of states. Note that this definition allows for Automaton with infinite states, a `fintype` instance must be supplied for true NFA's. -/ open set universes u v /-- An NFA is a set of states (`σ`), a transition function from state to state labelled by the alphabet (`step`), a starting state (`start`) and a set of acceptance states (`accept`). Note the transition function sends a state to a `set` of states. These are the states that it may be sent to. -/ structure NFA (α : Type u) (σ : Type v) := (step : σ → α → set σ) (start : set σ) (accept : set σ) variables {α : Type u} {σ σ' : Type v} (M : NFA α σ) namespace NFA instance : inhabited (NFA α σ) := ⟨ NFA.mk (λ _ _, ∅) ∅ ∅ ⟩ /-- `M.step_set S a` is the union of `M.step s a` for all `s ∈ S`. -/ def step_set (S : set σ) (a : α) : set σ := ⋃ s ∈ S, M.step s a lemma mem_step_set (s : σ) (S : set σ) (a : α) : s ∈ M.step_set S a ↔ ∃ t ∈ S, s ∈ M.step t a := mem_Union₂ @[simp] lemma step_set_empty (a : α) : M.step_set ∅ a = ∅ := by simp_rw [step_set, Union_false, Union_empty] /-- `M.eval_from S x` computes all possible paths though `M` with input `x` starting at an element of `S`. -/ def eval_from (start : set σ) : list α → set σ := list.foldl M.step_set start @[simp] lemma eval_from_nil (S : set σ) : M.eval_from S [] = S := rfl @[simp] lemma eval_from_singleton (S : set σ) (a : α) : M.eval_from S [a] = M.step_set S a := rfl @[simp] lemma eval_from_append_singleton (S : set σ) (x : list α) (a : α) : M.eval_from S (x ++ [a]) = M.step_set (M.eval_from S x) a := by simp only [eval_from, list.foldl_append, list.foldl_cons, list.foldl_nil] /-- `M.eval x` computes all possible paths though `M` with input `x` starting at an element of `M.start`. -/ def eval : list α → set σ := M.eval_from M.start @[simp] lemma eval_nil : M.eval [] = M.start := rfl @[simp] lemma eval_singleton (a : α) : M.eval [a] = M.step_set M.start a := rfl @[simp] lemma eval_append_singleton (x : list α) (a : α) : M.eval (x ++ [a]) = M.step_set (M.eval x) a := eval_from_append_singleton _ _ _ _ /-- `M.accepts` is the language of `x` such that there is an accept state in `M.eval x`. -/ def accepts : language α := λ x, ∃ S ∈ M.accept, S ∈ M.eval x /-- `M.to_DFA` is an `DFA` constructed from a `NFA` `M` using the subset construction. The states is the type of `set`s of `M.state` and the step function is `M.step_set`. -/ def to_DFA : DFA α (set σ) := { step := M.step_set, start := M.start, accept := {S | ∃ s ∈ S, s ∈ M.accept} } @[simp] lemma to_DFA_correct : M.to_DFA.accepts = M.accepts := begin ext x, rw [accepts, DFA.accepts, eval, DFA.eval], change list.foldl _ _ _ ∈ {S | _} ↔ _, split; { exact λ ⟨w, h2, h3⟩, ⟨w, h3, h2⟩ }, end lemma pumping_lemma [fintype σ] {x : list α} (hx : x ∈ M.accepts) (hlen : fintype.card (set σ) ≤ list.length x) : ∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ fintype.card (set σ) ∧ b ≠ [] ∧ {a} * language.star {b} * {c} ≤ M.accepts := begin rw ←to_DFA_correct at hx ⊢, exact M.to_DFA.pumping_lemma hx hlen end end NFA namespace DFA /-- `M.to_NFA` is an `NFA` constructed from a `DFA` `M` by using the same start and accept states and a transition function which sends `s` with input `a` to the singleton `M.step s a`. -/ def to_NFA (M : DFA α σ') : NFA α σ' := { step := λ s a, {M.step s a}, start := {M.start}, accept := M.accept } @[simp] lemma to_NFA_eval_from_match (M : DFA α σ) (start : σ) (s : list α) : M.to_NFA.eval_from {start} s = {M.eval_from start s} := begin change list.foldl M.to_NFA.step_set {start} s = {list.foldl M.step start s}, induction s with a s ih generalizing start, { tauto }, { rw [list.foldl, list.foldl, show M.to_NFA.step_set {start} a = {M.step start a}, by simpa [NFA.step_set]], tauto } end @[simp] lemma to_NFA_correct (M : DFA α σ) : M.to_NFA.accepts = M.accepts := begin ext x, change (∃ S H, S ∈ M.to_NFA.eval_from {M.start} x) ↔ _, rw to_NFA_eval_from_match, split, { rintro ⟨ S, hS₁, hS₂ ⟩, rwa set.mem_singleton_iff.mp hS₂ at hS₁ }, { exact λ h, ⟨M.eval x, h, rfl⟩ } end end DFA