/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import control.applicative import data.list.forall2 import data.set.functor /-! # Traversable instances This file provides instances of `traversable` for types from the core library: `option`, `list` and `sum`. -/ universes u v section option open functor variables {F G : Type u → Type u} variables [applicative F] [applicative G] variables [is_lawful_applicative F] [is_lawful_applicative G] lemma option.id_traverse {α} (x : option α) : option.traverse id.mk x = x := by cases x; refl @[nolint unused_arguments] lemma option.comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : option α) : option.traverse (comp.mk ∘ (<$>) f ∘ g) x = comp.mk (option.traverse f <$> option.traverse g x) := by cases x; simp! with functor_norm; refl lemma option.traverse_eq_map_id {α β} (f : α → β) (x : option α) : traverse (id.mk ∘ f) x = id.mk (f <$> x) := by cases x; refl variable (η : applicative_transformation F G) lemma option.naturality {α β} (f : α → F β) (x : option α) : η (option.traverse f x) = option.traverse (@η _ ∘ f) x := by cases x with x; simp! [*] with functor_norm end option instance : is_lawful_traversable option := { id_traverse := @option.id_traverse, comp_traverse := @option.comp_traverse, traverse_eq_map_id := @option.traverse_eq_map_id, naturality := @option.naturality, .. option.is_lawful_monad } namespace list variables {F G : Type u → Type u} variables [applicative F] [applicative G] section variables [is_lawful_applicative F] [is_lawful_applicative G] open applicative functor list protected lemma id_traverse {α} (xs : list α) : list.traverse id.mk xs = xs := by induction xs; simp! * with functor_norm; refl @[nolint unused_arguments] protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : list α) : list.traverse (comp.mk ∘ (<$>) f ∘ g) x = comp.mk (list.traverse f <$> list.traverse g x) := by induction x; simp! * with functor_norm; refl protected lemma traverse_eq_map_id {α β} (f : α → β) (x : list α) : list.traverse (id.mk ∘ f) x = id.mk (f <$> x) := by induction x; simp! * with functor_norm; refl variable (η : applicative_transformation F G) protected lemma naturality {α β} (f : α → F β) (x : list α) : η (list.traverse f x) = list.traverse (@η _ ∘ f) x := by induction x; simp! * with functor_norm open nat instance : is_lawful_traversable.{u} list := { id_traverse := @list.id_traverse, comp_traverse := @list.comp_traverse, traverse_eq_map_id := @list.traverse_eq_map_id, naturality := @list.naturality, .. list.is_lawful_monad } end section traverse variables {α' β' : Type u} (f : α' → F β') @[simp] lemma traverse_nil : traverse f ([] : list α') = (pure [] : F (list β')) := rfl @[simp] lemma traverse_cons (a : α') (l : list α') : traverse f (a :: l) = (::) <$> f a <*> traverse f l := rfl variables [is_lawful_applicative F] @[simp] lemma traverse_append : ∀ (as bs : list α'), traverse f (as ++ bs) = (++) <$> traverse f as <*> traverse f bs | [] bs := have has_append.append ([] : list β') = id, by funext; refl, by simp [this] with functor_norm | (a :: as) bs := by simp [traverse_append as bs] with functor_norm; congr lemma mem_traverse {f : α' → set β'} : ∀(l : list α') (n : list β'), n ∈ traverse f l ↔ forall₂ (λb a, b ∈ f a) n l | [] [] := by simp | (a::as) [] := by simp | [] (b::bs) := by simp | (a::as) (b::bs) := by simp [mem_traverse as bs] end traverse end list namespace sum section traverse variables {σ : Type u} variables {F G : Type u → Type u} variables [applicative F] [applicative G] open applicative functor open list (cons) protected lemma traverse_map {α β γ : Type u} (g : α → β) (f : β → G γ) (x : σ ⊕ α) : sum.traverse f (g <$> x) = sum.traverse (f ∘ g) x := by cases x; simp [sum.traverse, id_map] with functor_norm; refl variables [is_lawful_applicative F] [is_lawful_applicative G] protected lemma id_traverse {σ α} (x : σ ⊕ α) : sum.traverse id.mk x = x := by cases x; refl @[nolint unused_arguments] protected lemma comp_traverse {α β γ} (f : β → F γ) (g : α → G β) (x : σ ⊕ α) : sum.traverse (comp.mk ∘ (<$>) f ∘ g) x = comp.mk (sum.traverse f <$> sum.traverse g x) := by cases x; simp! [sum.traverse,map_id] with functor_norm; refl protected lemma traverse_eq_map_id {α β} (f : α → β) (x : σ ⊕ α) : sum.traverse (id.mk ∘ f) x = id.mk (f <$> x) := by induction x; simp! * with functor_norm; refl protected lemma map_traverse {α β γ} (g : α → G β) (f : β → γ) (x : σ ⊕ α) : (<$>) f <$> sum.traverse g x = sum.traverse ((<$>) f ∘ g) x := by cases x; simp [sum.traverse, id_map] with functor_norm; congr; refl variable (η : applicative_transformation F G) protected lemma naturality {α β} (f : α → F β) (x : σ ⊕ α) : η (sum.traverse f x) = sum.traverse (@η _ ∘ f) x := by cases x; simp! [sum.traverse] with functor_norm end traverse instance {σ : Type u} : is_lawful_traversable.{u} (sum σ) := { id_traverse := @sum.id_traverse σ, comp_traverse := @sum.comp_traverse σ, traverse_eq_map_id := @sum.traverse_eq_map_id σ, naturality := @sum.naturality σ, .. sum.is_lawful_monad } end sum