/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Jannis Limperg -/ /-! # Monadic instances for `ulift` and `plift` In this file we define `monad` and `is_lawful_monad` instances on `plift` and `ulift`. -/ universes u v namespace plift variables {α : Sort u} {β : Sort v} /-- Functorial action. -/ protected def map (f : α → β) (a : plift α) : plift β := plift.up (f a.down) @[simp] lemma map_up (f : α → β) (a : α) : (plift.up a).map f = plift.up (f a) := rfl /-- Embedding of pure values. -/ @[simp] protected def pure : α → plift α := up /-- Applicative sequencing. -/ protected def seq (f : plift (α → β)) (x : plift α) : plift β := plift.up (f.down x.down) @[simp] lemma seq_up (f : α → β) (x : α) : (plift.up f).seq (plift.up x) = plift.up (f x) := rfl /-- Monadic bind. -/ protected def bind (a : plift α) (f : α → plift β) : plift β := f a.down @[simp] lemma bind_up (a : α) (f : α → plift β) : (plift.up a).bind f = f a := rfl instance : monad plift := { map := @plift.map, pure := @plift.pure, seq := @plift.seq, bind := @plift.bind } instance : is_lawful_functor plift := { id_map := λ α ⟨x⟩, rfl, comp_map := λ α β γ g h ⟨x⟩, rfl } instance : is_lawful_applicative plift := { pure_seq_eq_map := λ α β g ⟨x⟩, rfl, map_pure := λ α β g x, rfl, seq_pure := λ α β ⟨g⟩ x, rfl, seq_assoc := λ α β γ ⟨x⟩ ⟨g⟩ ⟨h⟩, rfl } instance : is_lawful_monad plift := { bind_pure_comp_eq_map := λ α β f ⟨x⟩, rfl, bind_map_eq_seq := λ α β ⟨a⟩ ⟨b⟩, rfl, pure_bind := λ α β x f, rfl, bind_assoc := λ α β γ ⟨x⟩ f g, rfl } @[simp] lemma rec.constant {α : Sort u} {β : Type v} (b : β) : @plift.rec α (λ _, β) (λ _, b) = λ _, b := funext (λ x, plift.cases_on x (λ a, eq.refl (plift.rec (λ a', b) {down := a}))) end plift namespace ulift variables {α : Type u} {β : Type v} /-- Functorial action. -/ protected def map (f : α → β) (a : ulift α) : ulift β := ulift.up (f a.down) @[simp] lemma map_up (f : α → β) (a : α) : (ulift.up a).map f = ulift.up (f a) := rfl /-- Embedding of pure values. -/ @[simp] protected def pure : α → ulift α := up /-- Applicative sequencing. -/ protected def seq (f : ulift (α → β)) (x : ulift α) : ulift β := ulift.up (f.down x.down) @[simp] lemma seq_up (f : α → β) (x : α) : (ulift.up f).seq (ulift.up x) = ulift.up (f x) := rfl /-- Monadic bind. -/ protected def bind (a : ulift α) (f : α → ulift β) : ulift β := f a.down @[simp] lemma bind_up (a : α) (f : α → ulift β) : (ulift.up a).bind f = f a := rfl instance : monad ulift := { map := @ulift.map, pure := @ulift.pure, seq := @ulift.seq, bind := @ulift.bind } instance : is_lawful_functor ulift := { id_map := λ α ⟨x⟩, rfl, comp_map := λ α β γ g h ⟨x⟩, rfl } instance : is_lawful_applicative ulift := { to_is_lawful_functor := ulift.is_lawful_functor, pure_seq_eq_map := λ α β g ⟨x⟩, rfl, map_pure := λ α β g x, rfl, seq_pure := λ α β ⟨g⟩ x, rfl, seq_assoc := λ α β γ ⟨x⟩ ⟨g⟩ ⟨h⟩, rfl } instance : is_lawful_monad ulift := { bind_pure_comp_eq_map := λ α β f ⟨x⟩, rfl, bind_map_eq_seq := λ α β ⟨a⟩ ⟨b⟩, rfl, pure_bind := λ α β x f, by { dsimp only [bind, pure, ulift.pure, ulift.bind], cases (f x), refl }, bind_assoc := λ α β γ ⟨x⟩ f g, by { dsimp only [bind, pure, ulift.pure, ulift.bind], cases (f x), refl } } @[simp] lemma rec.constant {α : Type u} {β : Sort v} (b : β) : @ulift.rec α (λ _, β) (λ _, b) = λ _, b := funext (λ x, ulift.cases_on x (λ a, eq.refl (ulift.rec (λ a', b) {down := a}))) end ulift