/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Kenny Lau, Johan Commelin, Mario Carneiro, Kevin Buzzard -/ import group_theory.submonoid.basic import algebra.big_operators.basic import deprecated.group /-! # Unbundled submonoids (deprecated) This file is deprecated, and is no longer imported by anything in mathlib other than other deprecated files, and test files. You should not need to import it. This file defines unbundled multiplicative and additive submonoids. Instead of using this file, please use `submonoid G` and `add_submonoid A`, defined in `group_theory.submonoid.basic`. ## Main definitions `is_add_submonoid (S : set M)` : the predicate that `S` is the underlying subset of an additive submonoid of `M`. The bundled variant `add_submonoid M` should be used in preference to this. `is_submonoid (S : set M)` : the predicate that `S` is the underlying subset of a submonoid of `M`. The bundled variant `submonoid M` should be used in preference to this. ## Tags submonoid, submonoids, is_submonoid -/ open_locale big_operators variables {M : Type*} [monoid M] {s : set M} variables {A : Type*} [add_monoid A] {t : set A} /-- `s` is an additive submonoid: a set containing 0 and closed under addition. Note that this structure is deprecated, and the bundled variant `add_submonoid A` should be preferred. -/ structure is_add_submonoid (s : set A) : Prop := (zero_mem : (0:A) ∈ s) (add_mem {a b} : a ∈ s → b ∈ s → a + b ∈ s) /-- `s` is a submonoid: a set containing 1 and closed under multiplication. Note that this structure is deprecated, and the bundled variant `submonoid M` should be preferred. -/ @[to_additive] structure is_submonoid (s : set M) : Prop := (one_mem : (1:M) ∈ s) (mul_mem {a b} : a ∈ s → b ∈ s → a * b ∈ s) lemma additive.is_add_submonoid {s : set M} : ∀ (is : is_submonoid s), @is_add_submonoid (additive M) _ s | ⟨h₁, h₂⟩ := ⟨h₁, @h₂⟩ theorem additive.is_add_submonoid_iff {s : set M} : @is_add_submonoid (additive M) _ s ↔ is_submonoid s := ⟨λ ⟨h₁, h₂⟩, ⟨h₁, @h₂⟩, additive.is_add_submonoid⟩ lemma multiplicative.is_submonoid {s : set A} : ∀ (is : is_add_submonoid s), @is_submonoid (multiplicative A) _ s | ⟨h₁, h₂⟩ := ⟨h₁, @h₂⟩ theorem multiplicative.is_submonoid_iff {s : set A} : @is_submonoid (multiplicative A) _ s ↔ is_add_submonoid s := ⟨λ ⟨h₁, h₂⟩, ⟨h₁, @h₂⟩, multiplicative.is_submonoid⟩ /-- The intersection of two submonoids of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The intersection of two `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of M."] lemma is_submonoid.inter {s₁ s₂ : set M} (is₁ : is_submonoid s₁) (is₂ : is_submonoid s₂) : is_submonoid (s₁ ∩ s₂) := { one_mem := ⟨is₁.one_mem, is₂.one_mem⟩, mul_mem := λ x y hx hy, ⟨is₁.mul_mem hx.1 hy.1, is₂.mul_mem hx.2 hy.2⟩ } /-- The intersection of an indexed set of submonoids of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The intersection of an indexed set of `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of `M`."] lemma is_submonoid.Inter {ι : Sort*} {s : ι → set M} (h : ∀ y : ι, is_submonoid (s y)) : is_submonoid (set.Inter s) := { one_mem := set.mem_Inter.2 $ λ y, (h y).one_mem, mul_mem := λ x₁ x₂ h₁ h₂, set.mem_Inter.2 $ λ y, (h y).mul_mem (set.mem_Inter.1 h₁ y) (set.mem_Inter.1 h₂ y) } /-- The union of an indexed, directed, nonempty set of submonoids of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The union of an indexed, directed, nonempty set of `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of `M`. "] lemma is_submonoid_Union_of_directed {ι : Type*} [hι : nonempty ι] {s : ι → set M} (hs : ∀ i, is_submonoid (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) : is_submonoid (⋃i, s i) := { one_mem := let ⟨i⟩ := hι in set.mem_Union.2 ⟨i, (hs i).one_mem⟩, mul_mem := λ a b ha hb, let ⟨i, hi⟩ := set.mem_Union.1 ha in let ⟨j, hj⟩ := set.mem_Union.1 hb in let ⟨k, hk⟩ := directed i j in set.mem_Union.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ } section powers /-- The set of natural number powers `1, x, x², ...` of an element `x` of a monoid. -/ @[to_additive multiples "The set of natural number multiples `0, x, 2x, ...` of an element `x` of an `add_monoid`."] def powers (x : M) : set M := {y | ∃ n:ℕ, x^n = y} /-- 1 is in the set of natural number powers of an element of a monoid. -/ @[to_additive "0 is in the set of natural number multiples of an element of an `add_monoid`."] lemma powers.one_mem {x : M} : (1 : M) ∈ powers x := ⟨0, pow_zero _⟩ /-- An element of a monoid is in the set of that element's natural number powers. -/ @[to_additive "An element of an `add_monoid` is in the set of that element's natural number multiples."] lemma powers.self_mem {x : M} : x ∈ powers x := ⟨1, pow_one _⟩ /-- The set of natural number powers of an element of a monoid is closed under multiplication. -/ @[to_additive "The set of natural number multiples of an element of an `add_monoid` is closed under addition."] lemma powers.mul_mem {x y z : M} : (y ∈ powers x) → (z ∈ powers x) → (y * z ∈ powers x) := λ ⟨n₁, h₁⟩ ⟨n₂, h₂⟩, ⟨n₁ + n₂, by simp only [pow_add, *]⟩ /-- The set of natural number powers of an element of a monoid `M` is a submonoid of `M`. -/ @[to_additive "The set of natural number multiples of an element of an `add_monoid` `M` is an `add_submonoid` of `M`."] lemma powers.is_submonoid (x : M) : is_submonoid (powers x) := { one_mem := powers.one_mem, mul_mem := λ y z, powers.mul_mem } /-- A monoid is a submonoid of itself. -/ @[to_additive "An `add_monoid` is an `add_submonoid` of itself."] lemma univ.is_submonoid : is_submonoid (@set.univ M) := by split; simp /-- The preimage of a submonoid under a monoid hom is a submonoid of the domain. -/ @[to_additive "The preimage of an `add_submonoid` under an `add_monoid` hom is an `add_submonoid` of the domain."] lemma is_submonoid.preimage {N : Type*} [monoid N] {f : M → N} (hf : is_monoid_hom f) {s : set N} (hs : is_submonoid s) : is_submonoid (f ⁻¹' s) := { one_mem := show f 1 ∈ s, by rw is_monoid_hom.map_one hf; exact hs.one_mem, mul_mem := λ a b (ha : f a ∈ s) (hb : f b ∈ s), show f (a * b) ∈ s, by rw is_monoid_hom.map_mul hf; exact hs.mul_mem ha hb } /-- The image of a submonoid under a monoid hom is a submonoid of the codomain. -/ @[to_additive "The image of an `add_submonoid` under an `add_monoid` hom is an `add_submonoid` of the codomain."] lemma is_submonoid.image {γ : Type*} [monoid γ] {f : M → γ} (hf : is_monoid_hom f) {s : set M} (hs : is_submonoid s) : is_submonoid (f '' s) := { one_mem := ⟨1, hs.one_mem, hf.map_one⟩, mul_mem := λ a b ⟨x, hx⟩ ⟨y, hy⟩, ⟨x * y, hs.mul_mem hx.1 hy.1, by rw [hf.map_mul, hx.2, hy.2]⟩ } /-- The image of a monoid hom is a submonoid of the codomain. -/ @[to_additive "The image of an `add_monoid` hom is an `add_submonoid` of the codomain."] lemma range.is_submonoid {γ : Type*} [monoid γ] {f : M → γ} (hf : is_monoid_hom f) : is_submonoid (set.range f) := by { rw ← set.image_univ, exact univ.is_submonoid.image hf } /-- Submonoids are closed under natural powers. -/ @[to_additive is_add_submonoid.smul_mem "An `add_submonoid` is closed under multiplication by naturals."] lemma is_submonoid.pow_mem {a : M} (hs : is_submonoid s) (h : a ∈ s) : ∀ {n : ℕ}, a ^ n ∈ s | 0 := by { rw pow_zero, exact hs.one_mem } | (n + 1) := by { rw pow_succ, exact hs.mul_mem h is_submonoid.pow_mem } /-- The set of natural number powers of an element of a submonoid is a subset of the submonoid. -/ @[to_additive is_add_submonoid.multiples_subset "The set of natural number multiples of an element of an `add_submonoid` is a subset of the `add_submonoid`."] lemma is_submonoid.power_subset {a : M} (hs : is_submonoid s) (h : a ∈ s) : powers a ⊆ s := assume x ⟨n, hx⟩, hx ▸ hs.pow_mem h end powers namespace is_submonoid /-- The product of a list of elements of a submonoid is an element of the submonoid. -/ @[to_additive "The sum of a list of elements of an `add_submonoid` is an element of the `add_submonoid`."] lemma list_prod_mem (hs : is_submonoid s) : ∀{l : list M}, (∀x∈l, x ∈ s) → l.prod ∈ s | [] h := hs.one_mem | (a::l) h := suffices a * l.prod ∈ s, by simpa, have a ∈ s ∧ (∀x∈l, x ∈ s), by simpa using h, hs.mul_mem this.1 (list_prod_mem this.2) /-- The product of a multiset of elements of a submonoid of a `comm_monoid` is an element of the submonoid. -/ @[to_additive "The sum of a multiset of elements of an `add_submonoid` of an `add_comm_monoid` is an element of the `add_submonoid`. "] lemma multiset_prod_mem {M} [comm_monoid M] {s : set M} (hs : is_submonoid s) (m : multiset M) : (∀a∈m, a ∈ s) → m.prod ∈ s := begin refine quotient.induction_on m (assume l hl, _), rw [multiset.quot_mk_to_coe, multiset.coe_prod], exact list_prod_mem hs hl end /-- The product of elements of a submonoid of a `comm_monoid` indexed by a `finset` is an element of the submonoid. -/ @[to_additive "The sum of elements of an `add_submonoid` of an `add_comm_monoid` indexed by a `finset` is an element of the `add_submonoid`."] lemma finset_prod_mem {M A} [comm_monoid M] {s : set M} (hs : is_submonoid s) (f : A → M) : ∀(t : finset A), (∀b∈t, f b ∈ s) → ∏ b in t, f b ∈ s | ⟨m, hm⟩ _ := multiset_prod_mem hs _ (by simpa) end is_submonoid namespace add_monoid /-- The inductively defined membership predicate for the submonoid generated by a subset of a monoid. -/ inductive in_closure (s : set A) : A → Prop | basic {a : A} : a ∈ s → in_closure a | zero : in_closure 0 | add {a b : A} : in_closure a → in_closure b → in_closure (a + b) end add_monoid namespace monoid /-- The inductively defined membership predicate for the `submonoid` generated by a subset of an monoid. -/ @[to_additive] inductive in_closure (s : set M) : M → Prop | basic {a : M} : a ∈ s → in_closure a | one : in_closure 1 | mul {a b : M} : in_closure a → in_closure b → in_closure (a * b) /-- The inductively defined submonoid generated by a subset of a monoid. -/ @[to_additive "The inductively defined `add_submonoid` genrated by a subset of an `add_monoid`."] def closure (s : set M) : set M := {a | in_closure s a } @[to_additive] lemma closure.is_submonoid (s : set M) : is_submonoid (closure s) := { one_mem := in_closure.one, mul_mem := assume a b, in_closure.mul } /-- A subset of a monoid is contained in the submonoid it generates. -/ @[to_additive "A subset of an `add_monoid` is contained in the `add_submonoid` it generates."] theorem subset_closure {s : set M} : s ⊆ closure s := assume a, in_closure.basic /-- The submonoid generated by a set is contained in any submonoid that contains the set. -/ @[to_additive "The `add_submonoid` generated by a set is contained in any `add_submonoid` that contains the set."] theorem closure_subset {s t : set M} (ht : is_submonoid t) (h : s ⊆ t) : closure s ⊆ t := assume a ha, by induction ha; simp [h _, *, is_submonoid.one_mem, is_submonoid.mul_mem] /-- Given subsets `t` and `s` of a monoid `M`, if `s ⊆ t`, the submonoid of `M` generated by `s` is contained in the submonoid generated by `t`. -/ @[to_additive "Given subsets `t` and `s` of an `add_monoid M`, if `s ⊆ t`, the `add_submonoid` of `M` generated by `s` is contained in the `add_submonoid` generated by `t`."] theorem closure_mono {s t : set M} (h : s ⊆ t) : closure s ⊆ closure t := closure_subset (closure.is_submonoid t) $ set.subset.trans h subset_closure /-- The submonoid generated by an element of a monoid equals the set of natural number powers of the element. -/ @[to_additive "The `add_submonoid` generated by an element of an `add_monoid` equals the set of natural number multiples of the element."] theorem closure_singleton {x : M} : closure ({x} : set M) = powers x := set.eq_of_subset_of_subset (closure_subset (powers.is_submonoid x) $ set.singleton_subset_iff.2 $ powers.self_mem) $ is_submonoid.power_subset (closure.is_submonoid _) $ set.singleton_subset_iff.1 $ subset_closure /-- The image under a monoid hom of the submonoid generated by a set equals the submonoid generated by the image of the set under the monoid hom. -/ @[to_additive "The image under an `add_monoid` hom of the `add_submonoid` generated by a set equals the `add_submonoid` generated by the image of the set under the `add_monoid` hom."] lemma image_closure {A : Type*} [monoid A] {f : M → A} (hf : is_monoid_hom f) (s : set M) : f '' closure s = closure (f '' s) := le_antisymm begin rintros _ ⟨x, hx, rfl⟩, apply in_closure.rec_on hx; intros, { solve_by_elim [subset_closure, set.mem_image_of_mem] }, { rw [hf.map_one], apply is_submonoid.one_mem (closure.is_submonoid (f '' s))}, { rw [hf.map_mul], solve_by_elim [(closure.is_submonoid _).mul_mem] } end (closure_subset (is_submonoid.image hf (closure.is_submonoid _)) $ set.image_subset _ subset_closure) /-- Given an element `a` of the submonoid of a monoid `M` generated by a set `s`, there exists a list of elements of `s` whose product is `a`. -/ @[to_additive "Given an element `a` of the `add_submonoid` of an `add_monoid M` generated by a set `s`, there exists a list of elements of `s` whose sum is `a`."] theorem exists_list_of_mem_closure {s : set M} {a : M} (h : a ∈ closure s) : (∃l:list M, (∀x∈l, x ∈ s) ∧ l.prod = a) := begin induction h, case in_closure.basic : a ha { existsi ([a]), simp [ha] }, case in_closure.one { existsi ([]), simp }, case in_closure.mul : a b _ _ ha hb { rcases ha with ⟨la, ha, eqa⟩, rcases hb with ⟨lb, hb, eqb⟩, existsi (la ++ lb), simp [eqa.symm, eqb.symm, or_imp_distrib], exact assume a, ⟨ha a, hb a⟩ } end /-- Given sets `s, t` of a commutative monoid `M`, `x ∈ M` is in the submonoid of `M` generated by `s ∪ t` iff there exists an element of the submonoid generated by `s` and an element of the submonoid generated by `t` whose product is `x`. -/ @[to_additive "Given sets `s, t` of a commutative `add_monoid M`, `x ∈ M` is in the `add_submonoid` of `M` generated by `s ∪ t` iff there exists an element of the `add_submonoid` generated by `s` and an element of the `add_submonoid` generated by `t` whose sum is `x`."] theorem mem_closure_union_iff {M : Type*} [comm_monoid M] {s t : set M} {x : M} : x ∈ closure (s ∪ t) ↔ ∃ y ∈ closure s, ∃ z ∈ closure t, y * z = x := ⟨λ hx, let ⟨L, HL1, HL2⟩ := exists_list_of_mem_closure hx in HL2 ▸ list.rec_on L (λ _, ⟨1, (closure.is_submonoid _).one_mem, 1, (closure.is_submonoid _).one_mem, mul_one _⟩) (λ hd tl ih HL1, let ⟨y, hy, z, hz, hyzx⟩ := ih (list.forall_mem_of_forall_mem_cons HL1) in or.cases_on (HL1 hd $ list.mem_cons_self _ _) (λ hs, ⟨hd * y, (closure.is_submonoid _).mul_mem (subset_closure hs) hy, z, hz, by rw [mul_assoc, list.prod_cons, ← hyzx]; refl⟩) (λ ht, ⟨y, hy, z * hd, (closure.is_submonoid _).mul_mem hz (subset_closure ht), by rw [← mul_assoc, list.prod_cons, ← hyzx, mul_comm hd]; refl⟩)) HL1, λ ⟨y, hy, z, hz, hyzx⟩, hyzx ▸ (closure.is_submonoid _).mul_mem (closure_mono (set.subset_union_left _ _) hy) (closure_mono (set.subset_union_right _ _) hz)⟩ end monoid /-- Create a bundled submonoid from a set `s` and `[is_submonoid s]`. -/ @[to_additive "Create a bundled additive submonoid from a set `s` and `[is_add_submonoid s]`."] def submonoid.of {s : set M} (h : is_submonoid s) : submonoid M := ⟨s, h.2, h.1⟩ @[to_additive] lemma submonoid.is_submonoid (S : submonoid M) : is_submonoid (S : set M) := ⟨S.3, S.2⟩