/- Copyright (c) 2021 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import logic.function.basic import tactic.protected /-! # Types that are empty In this file we define a typeclass `is_empty`, which expresses that a type has no elements. ## Main declaration * `is_empty`: a typeclass that expresses that a type is empty. -/ variables {α β γ : Sort*} /-- `is_empty α` expresses that `α` is empty. -/ @[protect_proj] class is_empty (α : Sort*) : Prop := (false : α → false) instance : is_empty empty := ⟨empty.elim⟩ instance : is_empty pempty := ⟨pempty.elim⟩ instance : is_empty false := ⟨id⟩ instance : is_empty (fin 0) := ⟨λ n, nat.not_lt_zero n.1 n.2⟩ protected lemma function.is_empty [is_empty β] (f : α → β) : is_empty α := ⟨λ x, is_empty.false (f x)⟩ instance {p : α → Sort*} [h : nonempty α] [∀ x, is_empty (p x)] : is_empty (Π x, p x) := h.elim $ λ x, function.is_empty $ function.eval x instance pprod.is_empty_left [is_empty α] : is_empty (pprod α β) := function.is_empty pprod.fst instance pprod.is_empty_right [is_empty β] : is_empty (pprod α β) := function.is_empty pprod.snd instance prod.is_empty_left {α β} [is_empty α] : is_empty (α × β) := function.is_empty prod.fst instance prod.is_empty_right {α β} [is_empty β] : is_empty (α × β) := function.is_empty prod.snd instance [is_empty α] [is_empty β] : is_empty (psum α β) := ⟨λ x, psum.rec is_empty.false is_empty.false x⟩ instance {α β} [is_empty α] [is_empty β] : is_empty (α ⊕ β) := ⟨λ x, sum.rec is_empty.false is_empty.false x⟩ /-- subtypes of an empty type are empty -/ instance [is_empty α] (p : α → Prop) : is_empty (subtype p) := ⟨λ x, is_empty.false x.1⟩ /-- subtypes by an all-false predicate are false. -/ lemma subtype.is_empty_of_false {p : α → Prop} (hp : ∀ a, ¬(p a)) : is_empty (subtype p) := ⟨λ x, hp _ x.2⟩ /-- subtypes by false are false. -/ instance subtype.is_empty_false : is_empty {a : α // false} := subtype.is_empty_of_false (λ a, id) instance sigma.is_empty_left {α} [is_empty α] {E : α → Type*} : is_empty (sigma E) := function.is_empty sigma.fst /- Test that `pi.is_empty` finds this instance. -/ example [h : nonempty α] [is_empty β] : is_empty (α → β) := by apply_instance /-- Eliminate out of a type that `is_empty` (without using projection notation). -/ @[elab_as_eliminator] def is_empty_elim [is_empty α] {p : α → Sort*} (a : α) : p a := (is_empty.false a).elim lemma is_empty_iff : is_empty α ↔ α → false := ⟨@is_empty.false α, is_empty.mk⟩ namespace is_empty open function /-- Eliminate out of a type that `is_empty` (using projection notation). -/ protected def elim (h : is_empty α) {p : α → Sort*} (a : α) : p a := is_empty_elim a /-- Non-dependent version of `is_empty.elim`. Helpful if the elaborator cannot elaborate `h.elim a` correctly. -/ protected def elim' {β : Sort*} (h : is_empty α) (a : α) : β := h.elim a protected lemma prop_iff {p : Prop} : is_empty p ↔ ¬ p := is_empty_iff variables [is_empty α] @[simp] lemma forall_iff {p : α → Prop} : (∀ a, p a) ↔ true := iff_true_intro is_empty_elim @[simp] lemma exists_iff {p : α → Prop} : (∃ a, p a) ↔ false := iff_false_intro $ λ ⟨x, hx⟩, is_empty.false x @[priority 100] -- see Note [lower instance priority] instance : subsingleton α := ⟨is_empty_elim⟩ end is_empty @[simp] lemma not_nonempty_iff : ¬ nonempty α ↔ is_empty α := ⟨λ h, ⟨λ x, h ⟨x⟩⟩, λ h1 h2, h2.elim h1.elim⟩ @[simp] lemma not_is_empty_iff : ¬ is_empty α ↔ nonempty α := not_iff_comm.mp not_nonempty_iff @[simp] lemma is_empty_Prop {p : Prop} : is_empty p ↔ ¬p := by simp only [← not_nonempty_iff, nonempty_Prop] @[simp] lemma is_empty_pi {π : α → Sort*} : is_empty (Π a, π a) ↔ ∃ a, is_empty (π a) := by simp only [← not_nonempty_iff, classical.nonempty_pi, not_forall] @[simp] lemma is_empty_sigma {α} {E : α → Type*} : is_empty (sigma E) ↔ ∀ a, is_empty (E a) := by simp only [← not_nonempty_iff, nonempty_sigma, not_exists] @[simp] lemma is_empty_psigma {α} {E : α → Sort*} : is_empty (psigma E) ↔ ∀ a, is_empty (E a) := by simp only [← not_nonempty_iff, nonempty_psigma, not_exists] @[simp] lemma is_empty_subtype (p : α → Prop) : is_empty (subtype p) ↔ ∀ x, ¬p x := by simp only [← not_nonempty_iff, nonempty_subtype, not_exists] @[simp] lemma is_empty_prod {α β : Type*} : is_empty (α × β) ↔ is_empty α ∨ is_empty β := by simp only [← not_nonempty_iff, nonempty_prod, not_and_distrib] @[simp] lemma is_empty_pprod : is_empty (pprod α β) ↔ is_empty α ∨ is_empty β := by simp only [← not_nonempty_iff, nonempty_pprod, not_and_distrib] @[simp] lemma is_empty_sum {α β} : is_empty (α ⊕ β) ↔ is_empty α ∧ is_empty β := by simp only [← not_nonempty_iff, nonempty_sum, not_or_distrib] @[simp] lemma is_empty_psum {α β} : is_empty (psum α β) ↔ is_empty α ∧ is_empty β := by simp only [← not_nonempty_iff, nonempty_psum, not_or_distrib] @[simp] lemma is_empty_ulift {α} : is_empty (ulift α) ↔ is_empty α := by simp only [← not_nonempty_iff, nonempty_ulift] @[simp] lemma is_empty_plift {α} : is_empty (plift α) ↔ is_empty α := by simp only [← not_nonempty_iff, nonempty_plift] lemma well_founded_of_empty {α} [is_empty α] (r : α → α → Prop) : well_founded r := ⟨is_empty_elim⟩ variables (α) lemma is_empty_or_nonempty : is_empty α ∨ nonempty α := (em $ is_empty α).elim or.inl $ or.inr ∘ not_is_empty_iff.mp @[simp] lemma not_is_empty_of_nonempty [h : nonempty α] : ¬ is_empty α := not_is_empty_iff.mpr h variable {α} lemma function.extend_of_empty [is_empty α] (f : α → β) (g : α → γ) (h : β → γ) : function.extend f g h = h := funext $ λ x, function.extend_apply' _ _ _ $ λ ⟨a, h⟩, is_empty_elim a